Abstract

We report on an approach to exploit multiple light scattering by shaping the incident wavefront in optical coherence tomography (OCT). Most of the reflected signal from biological tissue consists of multiply scattered light, which is regarded as noise in OCT. A digital mirror device (DMD) is utilized to shape the incident wavefront such that the maximal energy is focused at a specific depth in a highly scattering sample using a coherence-gated reflectance signal as feedback. The proof-of-concept experiment demonstrates that this approach enhances depth-selective focusing in the presence of optical inhomogeneity, and thus extends the penetration depth in spectral domain-OCT (SD-OCT).

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  3. I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
    [CrossRef] [PubMed]
  4. M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
    [CrossRef] [PubMed]
  5. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
    [CrossRef]
  6. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A22(7), 1369–1379 (2005).
    [CrossRef] [PubMed]
  7. J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
    [CrossRef] [PubMed]
  8. S. Proskurin and I. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett.4(11), 824–826 (2007).
    [CrossRef]
  9. A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
    [CrossRef] [PubMed]
  10. M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Appl. Opt.49(1), 99–107 (2010).
    [CrossRef] [PubMed]
  11. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
    [CrossRef] [PubMed]
  12. M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
    [CrossRef] [PubMed]
  13. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
    [CrossRef] [PubMed]
  14. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
    [CrossRef] [PubMed]
  15. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
    [CrossRef] [PubMed]
  16. H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512–030513 (2009).
    [CrossRef] [PubMed]
  17. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
    [CrossRef] [PubMed]
  18. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
    [CrossRef] [PubMed]
  20. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
    [CrossRef] [PubMed]
  21. M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
    [CrossRef]
  22. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
    [CrossRef]
  23. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
    [CrossRef] [PubMed]
  24. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
    [CrossRef] [PubMed]
  25. D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19(5), 4017–4029 (2011).
    [CrossRef] [PubMed]
  26. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
    [CrossRef] [PubMed]
  27. J. H. Park, C. H. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.37(15), 3261–3263 (2012).
    [CrossRef] [PubMed]
  28. E. Small, O. Katz, Y. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett.37(16), 3429–3431 (2012).
    [CrossRef]
  29. R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express20(15), 16532–16543 (2012).
    [CrossRef]
  30. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
    [CrossRef] [PubMed]
  31. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
    [CrossRef]
  32. J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
    [CrossRef]
  33. R. P. Feynman, Feynman Lectures on Physics. Volume 3: Quantum Mechanics edited by R. P. Feynman, R. B. Leighton, and M. Sands, eds. (Addison-Wesley, Reading, MA, 1965).
  34. J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012).
    [CrossRef]
  35. F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
    [CrossRef] [PubMed]
  36. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
    [CrossRef] [PubMed]
  37. Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
    [CrossRef] [PubMed]
  38. I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
    [CrossRef]

2012 (8)

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express20(15), 16532–16543 (2012).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012).
[CrossRef]

J. H. Park, C. H. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Active spectral filtering through turbid media,” Opt. Lett.37(15), 3261–3263 (2012).
[CrossRef] [PubMed]

E. Small, O. Katz, Y. Guan, and Y. Silberberg, “Spectral control of broadband light through random media by wavefront shaping,” Opt. Lett.37(16), 3429–3431 (2012).
[CrossRef]

2011 (3)

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

2010 (2)

I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

M. Hughes, M. Spring, and A. Podoleanu, “Speckle noise reduction in optical coherence tomography of paint layers,” Appl. Opt.49(1), 99–107 (2010).
[CrossRef] [PubMed]

2009 (2)

Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
[CrossRef] [PubMed]

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512–030513 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (5)

2006 (2)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

2003 (3)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

2002 (1)

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

2000 (2)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

M. Bashkansky and J. Reintjes, “Statistics and reduction of speckle in optical coherence tomography,” Opt. Lett.25(8), 545–547 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

1996 (1)

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Akbulut, D.

Aretz, H. T.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Artal, P.

Aulbach, J.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

Badizadegan, K.

Bashkansky, M.

Bilenca, A.

Boppart, S. A.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Bouma, B. E.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Bourquin, S.

Bower, B. A.

Brezinski, M. E.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Busch, K.

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Caravaca-Aguirre, A. M.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Cho, Y. H.

Choi, K. B.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Choi, S.

Choi, W.

Conkey, D. B.

Cui, M.

Dasari, R.

de Boer, J. F.

Denk, W.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Desjardins, A. E.

Drexler, W.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Feld, M. S.

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett.29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

Fernández, E. J.

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

Fiolka, R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gjonaj, B.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

Gómez Rivas, J.

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Gorczynska, I.

Gotzinger, E.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Grant, G.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Guan, Y.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Houser, S. L.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, M.

Huisman, T. J.

Hyle Park, B.

Iftimia, N.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, I. K.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Johnson, P. M.

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

Jones, S. M.

Kang, D. H.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Karamata, B.

Katz, O.

Kowalczyk, A.

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Lambelet, P.

Lasser, T.

B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A22(7), 1369–1379 (2005).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Laubscher, M.

Laut, S.

Leitgeb, R.

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

Leutenegger, M.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Mack-Bucher, J. A.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Meglinski, I.

S. Proskurin and I. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett.4(11), 824–826 (2007).
[CrossRef]

Mosk, A.

I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett.32(16), 2309–2311 (2007).
[CrossRef] [PubMed]

Motaghiannezam, S. M.

Nassif, N.

Oh, W. Y.

Olivier, S. S.

Ozcan, A.

Park, B. H.

Park, C.

Park, C. H.

Park, J. H.

Park, S. J.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Park, S. W.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Park, Y. K.

Park, Y.-K.

Piestun, R.

Pircher, M.

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

Pitris, C.

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Podoleanu, A.

Pomerantsev, E.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Prieto, P. M.

Proskurin, S.

S. Proskurin and I. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett.4(11), 824–826 (2007).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Regar, E.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Reintjes, J.

Robles, F. E.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

Rollins, A. M.

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512–030513 (2009).
[CrossRef] [PubMed]

Rueckel, M.

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Sattmann, H.

Schlendorf, K.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Seung, K. B.

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Shishkov, M.

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Si, K.

Silberberg, Y.

Small, E.

Soukoulis, C.

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Sprik, R.

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Spring, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sylwestrzak, M.

Szkulmowski, M.

Szlag, D.

Tearney, G. J.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

A. Ozcan, A. Bilenca, A. E. Desjardins, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography images using digital filtering,” J. Opt. Soc. Am. A24(7), 1901–1910 (2007).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. Hyle Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett.29(5), 480–482 (2004).
[CrossRef] [PubMed]

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

Unterhuber, A.

Vakoc, B. J.

van der Steen, A. F. W.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

van Putten, E. G.

van Soest, G.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Vellekoop, I.

I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

Vellekoop, I. M.

Villiger, M.

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

Vos, W. L.

Wang, H.

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512–030513 (2009).
[CrossRef] [PubMed]

Wax, A.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

Werner, J. S.

Wilson, C.

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

Wojtkowski, M.

Yaqoob, Z.

Yu, H.

Yun, S. H.

Zawadzki, R. J.

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

Zhao, M.

Appl. Opt. (1)

EPL (Europhys. Lett.) (1)

J. Gómez Rivas, R. Sprik, C. Soukoulis, K. Busch, and A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” EPL (Europhys. Lett.)48(1), 22–28 (1999).
[CrossRef]

Expert Rev. Ophthalmol. (1)

M. Pircher and R. J. Zawadzki, “Combining adaptive optics with optical coherence tomography: Unveiling the cellular structure of the human retina in vivo,” Expert Rev. Ophthalmol.2(6), 1019–1035 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron.5(4), 1205–1215 (1999).
[CrossRef]

J. Am. Coll. Cardiol. (1)

I. K. Jang, B. E. Bouma, D. H. Kang, S. J. Park, S. W. Park, K. B. Seung, K. B. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. L. Houser, H. T. Aretz, and G. J. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: comparison with intravascular ultrasound,” J. Am. Coll. Cardiol.39(4), 604–609 (2002).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003).
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003).
[CrossRef] [PubMed]

G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, and A. F. W. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt.17(7), 076018 (2012).
[CrossRef] [PubMed]

H. Wang and A. M. Rollins, “Speckle reduction in optical coherence tomography using angular compounding by B-scan Doppler-shift encoding,” J. Biomed. Opt.14(3), 030512–030513 (2009).
[CrossRef] [PubMed]

A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Laser Phys. Lett. (1)

S. Proskurin and I. Meglinski, “Optical coherence tomography imaging depth enhancement by superficial skin optical clearing,” Laser Phys. Lett.4(11), 824–826 (2007).
[CrossRef]

Nat. Photonics (3)

F. E. Robles, C. Wilson, G. Grant, and A. Wax, “Molecular imaging true-colour spectroscopic optical coherence tomography,” Nat. Photonics5(12), 744–747 (2011).
[CrossRef] [PubMed]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012).
[CrossRef]

I. Vellekoop, A. Lagendijk, and A. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics4(5), 320–322 (2010).
[CrossRef]

Neoplasia (1)

J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, “Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy,” Neoplasia2(1/2), 9–25 (2000).
[CrossRef] [PubMed]

Opt. Express (10)

A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007).
[CrossRef] [PubMed]

A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging,” Opt. Express14(11), 4736–4745 (2006).
[CrossRef] [PubMed]

M. Szkulmowski, I. Gorczynska, D. Szlag, M. Sylwestrzak, A. Kowalczyk, and M. Wojtkowski, “Efficient reduction of speckle noise in optical coherence tomography,” Opt. Express20(2), 1337–1359 (2012).
[CrossRef] [PubMed]

R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express13(21), 8532–8546 (2005).
[CrossRef] [PubMed]

D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, and A. P. Mosk, “Focusing light through random photonic media by binary amplitude modulation,” Opt. Express19(5), 4017–4029 (2011).
[CrossRef] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express20(2), 1733–1740 (2012).
[CrossRef] [PubMed]

W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008).
[CrossRef] [PubMed]

Y.-K. Park, W. Choi, Z. Yaqoob, R. Dasari, K. Badizadegan, and M. S. Feld, “Speckle-field digital holographic microscopy,” Opt. Express17(15), 12285–12292 (2009).
[CrossRef] [PubMed]

R. Fiolka, K. Si, and M. Cui, “Complex wavefront corrections for deep tissue focusing using low coherence backscattered light,” Opt. Express20(15), 16532–16543 (2012).
[CrossRef]

J. H. Park, C. Park, H. Yu, Y. H. Cho, and Y. K. Park, “Dynamic active wave plate using random nanoparticles,” Opt. Express20(15), 17010–17016 (2012).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, and A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett.106(10), 103901 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys.66(2), 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

R. P. Feynman, Feynman Lectures on Physics. Volume 3: Quantum Mechanics edited by R. P. Feynman, R. B. Leighton, and M. Sands, eds. (Addison-Wesley, Reading, MA, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental scheme for scattering control in turbid media. (a) Focusing through homogeneous media. (b) Multiple scattering in turbid media results in different scattering paths, which is detrimental in both light delivery to a specific point as well as coherence gating. (c) By shaping the impinging wavefront, different scattering paths can be phase matched to allow focusing deeper into tissue while satisfying the coherence gating condition at the same time

Fig. 2
Fig. 2

Optical setup for wavefront controlled SD-OCT. A DMD and diffraction grating (G1) with a 4-f system (L1-L2) are added to a conventional SD-OCT system for wavefront shaping and dispersion compensation. L1 and L2 are 40 mm and 35 mm achromatic lenses, respectively.

Fig. 3
Fig. 3

Experimental results. (a) B-scan image for the 1st phantom which consists of transparent tape (I), PDMS mixed with 10 μm PS beads (II), non-transparent tape (III), cover glass (IV), and non-transparent tape (V). (b) and (c) For the yellow dotted line in (a), the maximized and minimized A-scan signals corresponding to the optimized wavefront (patterns #1-250 for each depth #1-250), respectively. (d) The patterns optimized for each depth (A, B, and C). Only 50 × 50 pixels at the center of 150 × 150 patterns were shown for visualization purposes.

Fig. 4
Fig. 4

Signal enhancement in wavefront controlled OCT signal; red lines in the figures represent the enhanced signal due to the optimized wavefront at single back-scattering positions indicated by A, B, and C. Black solid and dotted lines represent spatial compounding and single measurement using a Hadamard basis pattern.

Fig. 5
Fig. 5

Experimental results. (a) B-scan image for the 2nd phantom, which consists of PDMS mixed with 10 μm dia. PS beads (I), transparent tape (II), lens cleaning paper (III), and IR card (IV). (b) Reconstructed OCT signals of dotted yellow lines in (a). (c) The maximized A-scan signals corresponding to optimized wavefront for the yellow dotted line in (a). Increase in penetration depth can be seen by the detection of lens cleaning tissue layers depicted by the blue arrow.

Fig. 6
Fig. 6

Experimental results. (a) B-scan image for the 3nd phantom, a dried leaf. (b) Reconstructed OCT signals of dotted yellow lines in (a). The values for laser power were measured at the sample plane. (c) The maximized A-scan signals corresponding to optimized wavefront for yellow the dotted line in (a). Increase in penetration depth can be seen by the detection of leaf layer in targeted depths, i.e. enhanced OCT signals along the main diagonal.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E m = n=1 N t mn h n e j ϕ n
ϕ n = t mn +α
h i (x x 0 ,y y 0 ) FT H i (u,v) e j2π x 0 u e j2π y 0 v
f m = n=1 N h n exp( j ϕ n ), where ϕ n = t mn +α
d m ={ 1, f m >N/2 0, f m N/2

Metrics