Abstract

Reflectarrays composed of resonant microstrip gold patches on a dielectric substrate are demonstrated for operation at terahertz frequencies. Based on the relation between the patch size and the reflection phase, a progressive phase distribution is implemented on the patch array to create a reflector able to deflect an incident beam towards a predefined angle off the specular direction. In order to confirm the validity of the design, a set of reflectarrays each with periodically distributed 360 × 360 patch elements are fabricated and measured. The experimental results obtained through terahertz time-domain spectroscopy (THz-TDS) show that up to nearly 80% of the incident amplitude is deflected into the desired direction at an operation frequency close to 1 THz. The radiation patterns of the reflectarray in TM and TE polarizations are also obtained at different frequencies. This work presents an attractive concept for developing components able to efficiently manipulate terahertz radiation for emerging terahertz communications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
    [CrossRef]
  2. J. Huang and J. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2008).
    [CrossRef]
  3. J. P. Montgomery, “A microstrip reflectarray antenna element,” Antenna Applications Symposium, University of Illinois (1978).
  4. D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett.29, 657–658 (1993).
    [CrossRef]
  5. D. C. Chang and M. C. Huang, “Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization,” IEEE Trans. Antennas Propag.43, 829–834 (1995).
    [CrossRef]
  6. J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Trans. Antennas Propag.54, 1388–1392 (2006).
    [CrossRef]
  7. J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
    [CrossRef] [PubMed]
  8. J. Ginn, B. Lail, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S. Patent 7623071 B2 (2009).
  9. R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
    [CrossRef]
  10. J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
    [CrossRef]
  11. L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
    [CrossRef]
  12. J. A. Encinar, “Design of a dual frequency reflectarray using microstrip stacked patches of variable size,” Electron. Lett.32, 1049–1050 (1996).
    [CrossRef]
  13. J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag.49, 1403–1410 (2001).
    [CrossRef]
  14. J. A. Encinar, “Recent advances in reflectarray antennas,” Antennas and Propagation (EuCAP), Proceedings of the Fourth European Conference on (2010).
  15. W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
    [CrossRef]
  16. S. Ghadarghadr, Z. Hao, and H. Mosallaei, “Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics,” Opt. Express17, 18556–18570 (2009).
    [CrossRef]
  17. A. Ahmadi, S. Ghadarghadr, and H. Mosallaei, “An optical reflectarray nanoantenna: The concept and design,” Opt. Express18, 123–133 (2010).
    [CrossRef] [PubMed]
  18. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
    [CrossRef]
  19. N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
    [CrossRef]
  20. M. N. Islam and M. Koch, “Terahertz patch antenna arrays for indoor communications,” Int. Conference on Next-Generation Wireless Systems (Dhaka, Bangladesh) (2006).
  21. K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
    [CrossRef]
  22. K. Uematsu, K. Maki, and C. Otani, “Terahertz beam steering using interference of femtosecond optical pulses,” Opt. Express20, 22914–22921 (2012).
    [CrossRef] [PubMed]
  23. Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).
  24. Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
    [CrossRef]
  25. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
    [CrossRef]
  26. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves32, 143–171 (2011).
    [CrossRef]
  27. S. Lucyszyn, “Evaluating surface impedance models for terahertz frequencies at room temperature,” PIERS Online3, 554–559 (2007).
    [CrossRef]
  28. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
    [CrossRef]
  29. S. D. Targonski and D. M. Pozar, “Analysis and design of a microstrip reflectarray using patches of variable size,” Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, 1820–1823 (1994).
  30. F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag.51, 2953–2962 (2003).
    [CrossRef]
  31. H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
    [CrossRef]
  32. E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” Accepted for publication in IEEE Antennas Wirel. Propag. Lett.12 (2013).

2013 (2)

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” Accepted for publication in IEEE Antennas Wirel. Propag. Lett.12 (2013).

2012 (4)

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

K. Uematsu, K. Maki, and C. Otani, “Terahertz beam steering using interference of femtosecond optical pulses,” Opt. Express20, 22914–22921 (2012).
[CrossRef] [PubMed]

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

2011 (4)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves32, 143–171 (2011).
[CrossRef]

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

2010 (1)

2009 (2)

S. Ghadarghadr, Z. Hao, and H. Mosallaei, “Plasmonic array nanoantennas on layered substrates: modeling and radiation characteristics,” Opt. Express17, 18556–18570 (2009).
[CrossRef]

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

2008 (2)

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
[CrossRef] [PubMed]

2007 (1)

S. Lucyszyn, “Evaluating surface impedance models for terahertz frequencies at room temperature,” PIERS Online3, 554–559 (2007).
[CrossRef]

2006 (1)

J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Trans. Antennas Propag.54, 1388–1392 (2006).
[CrossRef]

2003 (1)

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag.51, 2953–2962 (2003).
[CrossRef]

2001 (1)

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag.49, 1403–1410 (2001).
[CrossRef]

1996 (1)

J. A. Encinar, “Design of a dual frequency reflectarray using microstrip stacked patches of variable size,” Electron. Lett.32, 1049–1050 (1996).
[CrossRef]

1995 (2)

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
[CrossRef]

D. C. Chang and M. C. Huang, “Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization,” IEEE Trans. Antennas Propag.43, 829–834 (1995).
[CrossRef]

1994 (1)

S. D. Targonski and D. M. Pozar, “Analysis and design of a microstrip reflectarray using patches of variable size,” Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, 1820–1823 (1994).

1993 (1)

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett.29, 657–658 (1993).
[CrossRef]

1992 (1)

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

1963 (1)

D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
[CrossRef]

Abbott, D.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Ahmadi, A.

Alda, J.

Altmann, K.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Arrebola, M.

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

Auston, D. H.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

Azad, A. K.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

Berry, D. G.

D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
[CrossRef]

Bhaskaran, M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Bialkowski, M. E.

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag.51, 2953–2962 (2003).
[CrossRef]

Boreman, G.

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
[CrossRef] [PubMed]

J. Ginn, B. Lail, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S. Patent 7623071 B2 (2009).

Cahill, R.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Carrasco, E.

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” Accepted for publication in IEEE Antennas Wirel. Propag. Lett.12 (2013).

Chang, D. C.

D. C. Chang and M. C. Huang, “Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization,” IEEE Trans. Antennas Propag.43, 829–834 (1995).
[CrossRef]

Chang, K.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
[CrossRef]

Chen, H. T.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

Dabrowski, R.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

de la Fuente, L. F.

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

Deibel, J. A.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Dickie, R.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Encinar, J.

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

J. Huang and J. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2008).
[CrossRef]

Encinar, J. A.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag.49, 1403–1410 (2001).
[CrossRef]

J. A. Encinar, “Design of a dual frequency reflectarray using microstrip stacked patches of variable size,” Electron. Lett.32, 1049–1050 (1996).
[CrossRef]

J. A. Encinar, “Recent advances in reflectarray antennas,” Antennas and Propagation (EuCAP), Proceedings of the Fourth European Conference on (2010).

Froberg, N. M.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

Fumeaux, C.

Fusco, V.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Gamble, H.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Ghadarghadr, S.

Gianvittorio, J. P.

J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Trans. Antennas Propag.54, 1388–1392 (2006).
[CrossRef]

Gillard, R.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Ginn, J.

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
[CrossRef] [PubMed]

J. Ginn, B. Lail, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S. Patent 7623071 B2 (2009).

Girard, E.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Grant, N.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Hao, Z.

Hillmer, H.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Hu, B. B.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

Hu, W.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

Huang, J.

J. Huang and J. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2008).
[CrossRef]

Huang, M. C.

D. C. Chang and M. C. Huang, “Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization,” IEEE Trans. Antennas Propag.43, 829–834 (1995).
[CrossRef]

Islam, M. N.

M. N. Islam and M. Koch, “Terahertz patch antenna arrays for indoor communications,” Int. Conference on Next-Generation Wireless Systems (Dhaka, Bangladesh) (2006).

Jansen, C.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Javor, R. D.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
[CrossRef]

Kawase, K.

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Kennedy, W. A.

D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
[CrossRef]

Khodasevych, I. E.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves32, 143–171 (2011).
[CrossRef]

Koch, M.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

M. N. Islam and M. Koch, “Terahertz patch antenna arrays for indoor communications,” Int. Conference on Next-Generation Wireless Systems (Dhaka, Bangladesh) (2006).

Lail, B.

J. Ginn, B. Lail, J. Alda, and G. Boreman, “Planar infrared binary phase reflectarray,” Opt. Lett.33, 779–781 (2008).
[CrossRef] [PubMed]

J. Ginn, B. Lail, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S. Patent 7623071 B2 (2009).

Legay, H.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Lin, H.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Loison, R.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Lucyszyn, S.

S. Lucyszyn, “Evaluating surface impedance models for terahertz frequencies at room temperature,” PIERS Online3, 554–559 (2007).
[CrossRef]

Maki, K.

K. Uematsu, K. Maki, and C. Otani, “Terahertz beam steering using interference of femtosecond optical pulses,” Opt. Express20, 22914–22921 (2012).
[CrossRef] [PubMed]

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Malech, R. G.

D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
[CrossRef]

Metzler, T. A.

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett.29, 657–658 (1993).
[CrossRef]

Mitchell, A.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Monnai, Y.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Montgomery, J. P.

J. P. Montgomery, “A microstrip reflectarray antenna element,” Antenna Applications Symposium, University of Illinois (1978).

Mosallaei, H.

Moustafa, L.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves32, 143–171 (2011).
[CrossRef]

O’Hara, J. F.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

Otani, C.

K. Uematsu, K. Maki, and C. Otani, “Terahertz beam steering using interference of femtosecond optical pulses,” Opt. Express20, 22914–22921 (2012).
[CrossRef] [PubMed]

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Peris, F.

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

Perruisseau-Carrier, J.

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” Accepted for publication in IEEE Antennas Wirel. Propag. Lett.12 (2013).

Pozar, D. M.

S. D. Targonski and D. M. Pozar, “Analysis and design of a microstrip reflectarray using patches of variable size,” Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, 1820–1823 (1994).

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett.29, 657–658 (1993).
[CrossRef]

Rahmat-Samii, Y.

J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Trans. Antennas Propag.54, 1388–1392 (2006).
[CrossRef]

Reuter, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Rowe, W. S. T.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Scheller, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Scherger, B.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Shah, C. M.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Shibuya, T.

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Shinoda, H.

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Sriram, S.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Suizu, K.

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Targonski, S. D.

S. D. Targonski and D. M. Pozar, “Analysis and design of a microstrip reflectarray using patches of variable size,” Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, 1820–1823 (1994).

Taylor, A. J.

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

Toso, G.

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

Tsai, F. C. E.

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag.51, 2953–2962 (2003).
[CrossRef]

Uematsu, K.

Ung, B. S. Y.

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Viereck, V.

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

Vieweg, N.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

Withayachumnankul, W.

L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express21, 1344–1352 (2013).
[CrossRef]

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Wu, X. D.

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
[CrossRef]

Zhang, X.-C.

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

Zou, L.

Antennas and Propagation Society International Symposium, 1994. AP-S. Digest (1)

S. D. Targonski and D. M. Pozar, “Analysis and design of a microstrip reflectarray using patches of variable size,” Antennas and Propagation Society International Symposium, 1994. AP-S. Digest, 1820–1823 (1994).

Appl. Phy. Lett. (1)

I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, and A. Mitchell, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phy. Lett.100, 061101 (2012).
[CrossRef]

Appl. Phys. Express (1)

K. Maki, T. Shibuya, C. Otani, K. Suizu, and K. Kawase, “Terahertz beam steering via tilted-phase difference-frequency mixing,” Appl. Phys. Express2, 022301 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Monnai, K. Altmann, C. Jansen, M. Koch, H. Hillmer, and H. Shinoda, “Terahertz beam focusing based on plasmonic waveguide scattering,” Appl. Phys. Lett.101, 151116 (2012).
[CrossRef]

Electron. Lett. (2)

D. M. Pozar and T. A. Metzler, “Analysis of a reflectarray antenna using microstrip patches of variable size,” Electron. Lett.29, 657–658 (1993).
[CrossRef]

J. A. Encinar, “Design of a dual frequency reflectarray using microstrip stacked patches of variable size,” Electron. Lett.32, 1049–1050 (1996).
[CrossRef]

IEEE Antennas Wirel. Propag. Lett. (1)

L. Moustafa, R. Gillard, F. Peris, R. Loison, H. Legay, and E. Girard, “The phoenix cell: a new reflectarray cell with large bandwidth and rebirth capabilities,” IEEE Antennas Wirel. Propag. Lett.10, 71–74 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. M. Froberg, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Terahertz radiation from a photoconducting antenna array,” IEEE J. Quantum Electron.28, 2291–2301 (1992).
[CrossRef]

IEEE Trans. Antennas Propag. (8)

J. A. Encinar, “Design of two-layer printed reflectarrays using patches of variable size,” IEEE Trans. Antennas Propag.49, 1403–1410 (2001).
[CrossRef]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and measurement of reconfigurable millimeter wave reflectarray cells with nematic liquid crystal,” IEEE Trans. Antennas Propag.56, 3112–3117 (2008).
[CrossRef]

D. C. Chang and M. C. Huang, “Multiple-polarization microstrip reflectarray antenna with high efficiency and low cross-polarization,” IEEE Trans. Antennas Propag.43, 829–834 (1995).
[CrossRef]

J. P. Gianvittorio and Y. Rahmat-Samii, “Reconfigurable patch antennas for steerable reflectarray applications,” IEEE Trans. Antennas Propag.54, 1388–1392 (2006).
[CrossRef]

D. G. Berry, R. G. Malech, and W. A. Kennedy, “The reflectarray antenna,” IEEE Trans. Antennas Propag.11, 645–651 (1963).
[CrossRef]

R. D. Javor, X. D. Wu, and K. Chang, “Design and performance of a microstrip reflectarray antenna,” IEEE Trans. Antennas Propag.43, 932–939 (1995).
[CrossRef]

J. Encinar, M. Arrebola, L. F. de la Fuente, and G. Toso, “A transmit-receive reflectarray antenna for direct broadcast satellite applications,” IEEE Trans. Antennas Propag.59, 3255–3264 (2011).
[CrossRef]

F. C. E. Tsai and M. E. Bialkowski, “Designing a 161-element Ku-band microstrip reflectarray of variable size patches using an equivalent unit cell waveguide approach,” IEEE Trans. Antennas Propag.51, 2953–2962 (2003).
[CrossRef]

J. Infrared Milli. Terahz. Waves (1)

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared Milli. Terahz. Waves33, 1117–1122 (2012).
[CrossRef]

J. Infrared Millim. Terahz. Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahz. Waves32, 143–171 (2011).
[CrossRef]

Laser Photon. Rev. (1)

H. T. Chen, J. F. O’Hara, A. K. Azad, and A. J. Taylor, “Manipulation of terahertz radiation using metamaterials,” Laser Photon. Rev.5, 513–533 (2011).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

PIERS Online (1)

S. Lucyszyn, “Evaluating surface impedance models for terahertz frequencies at room temperature,” PIERS Online3, 554–559 (2007).
[CrossRef]

Propag. Lett. (1)

E. Carrasco and J. Perruisseau-Carrier, “Reflectarray Antenna at Terahertz Using Graphene,” Accepted for publication in IEEE Antennas Wirel. Propag. Lett.12 (2013).

Other (6)

Y. Monnai, V. Viereck, H. Hillmer, K. Altmann, C. Jansen, M. Koch, and H. Shinoda, “Terahertz beam steering using structured MEMS surfaces for networked wireless sensing,” Ninth International Conference on Networked Sensing Systems (INSS) (2012).

J. Ginn, B. Lail, and G. Boreman, “Sub-millimeter and infrared reflectarray,” U.S. Patent 7623071 B2 (2009).

J. Huang and J. Encinar, Reflectarray Antenna (Wiley-IEEE Press, 2008).
[CrossRef]

J. P. Montgomery, “A microstrip reflectarray antenna element,” Antenna Applications Symposium, University of Illinois (1978).

J. A. Encinar, “Recent advances in reflectarray antennas,” Antennas and Propagation (EuCAP), Proceedings of the Fourth European Conference on (2010).

M. N. Islam and M. Koch, “Terahertz patch antenna arrays for indoor communications,” Int. Conference on Next-Generation Wireless Systems (Dhaka, Bangladesh) (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Operation principle of the designed reflectarray. The phase distribution results in deflection of a normally incident plane wave towards predesigned angle θ. Here, a indicsates the spacing between the center points of two adjacent elements, and ϕi(i = 0, 1, 2, 3, 4, 5) indicates the phase change introduced by the corresponding element.

Fig. 2
Fig. 2

A unit cell for the reflectarrays with a = 140 μm and h = 15 μm. The patch dimension l is varied within the range from 10 μm to 136 μm to cover a nearly full cycle of the phase response.

Fig. 3
Fig. 3

Simulated reflection coefficients for 2D uniform infinite patch arrays. Reflection phase response in degree (a) and reflection magnitude in dB (b) at 1 THz as a function of the patch size. The six points on the phase curve of the 15 μm thick substrate indicate the selected patch sizes to define a sub-array that completes one full cycle phase change. The roughness in the magnitude and phase curves is due to the limitation in the numerical accuracy.

Fig. 4
Fig. 4

Instantaneous scattered field from the reflectarray in TM and TE polarization at 1 THz. (a) Field distribution for the TM polarization. (b) Field distribution with the same structure and incident direction as in (a) but for the TE polarization. The incident wave is off normal with θ = 21°. For the TM polarization, the E field is in the yz plane, and for the TE polarization, the E field is in parallel with the x axis. (c) Structure of one sub-array made of 6 patch elements depicted at the same scale as those in (a) and (b).

Fig. 5
Fig. 5

Reflectarray prototype. (a) Photograph of the sample. (b) Microscopy image for a small part of the reflectarray. The dashed rectangle encloses one of the sub-arrays.

Fig. 6
Fig. 6

Measurement system. (a) Photograph of the measurement system. (b) Corresponding schematic. The beam from the emitter is collimated by Lens 1, and incident on the surface of the sample. Lens 2 concentrates the scattered beam on to the detector. Lens 2 and the detector are fixed on an arm mounted on a rotating platform, allowing a wide angular range to be scanned.

Fig. 7
Fig. 7

Measured pulses and spectra in the TM polarization. (a) The reference pulse. (b) The specular reflection of the reflectarray sample. (c) The deflection of the reflectarray sample. (d) The spectra of the reference (black dashed line), the reflection (red solid line), and the deflection (blue solid line). (e) The normalized reflection (red dotted line) and deflection (blue solid line) amplitude.

Fig. 8
Fig. 8

Measured pulses and spectra in the TE polarization. (a) The reference pulse. (b) The specular reflection of the reflectarray sample. (c) The deflection of the reflectarray sample. (d) The spectra of the reference (black dashed line), the reflection (red solid line), and the deflection (blue solid line). (e) The normalized reflection (red dotted line) and deflection (blue solid line) amplitude.

Fig. 9
Fig. 9

Measured radiation pattern at different frequencies in TM polarization (blue solid line) and TE polarization (red dotted line) in logarithmic scale. The reflection and deflection always exist as Floquet modes although the intensity varies with frequencies. The closer the frequency is to 0.93 THz, the stronger the deflection and the weaker the reflection become, and vice versa.

Fig. 10
Fig. 10

Measured deflection spectra for two samples with different substrate thicknesses for the TM polarization. For the sample with the thickness of 15 μm, the angle for maximum deflection is 25°, while for the 17 μm thick sample, the corresponding deflection angle is 26°.

Fig. 11
Fig. 11

Simulated reflection phase responses for 2D uniform infinite patch arrays with the normal and oblique incidences for the TM and TE polarizations at 1 THz. All the dimensions, including the substrate thickness and the unit cell size, are the same with the case of h = 15 μm given in Fig. 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ 0 + n k 0 Δ s = ϕ n ,
Δ ϕ = k 0 Δ s = 2 π λ 0 a sin θ ,
sin θ = Δ ϕ λ 0 2 π a .
Z SR = j ω μ 0 μ r σ R + j ω ε 0 with σ R = σ 0 1 + j ω τ ,
r = 0.0001 h 4 0.0328 h 3 + 3.9880 h 2 238.460 h + 7926.4 .

Metrics