Abstract

We experimentally demonstrate simultaneous all-optical regeneration of two 160-Gbit/s wavelength-division multiplexed (WDM) channels in a single highly nonlinear fiber (HNLF). The multi-channel regeneration performance is confirmed by bit-error rate (BER) measurements. The receiver powers at a BER of 10−9 are improved by about 4.9 dB and 2.1 dB for the two channels, respectively. The BER performance is not degraded by the presence of a second channel. Mitigation of the inter-channel nonlinearities is achieved through bidirectional propagation.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
    [CrossRef]
  2. S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, “160 Gbit/s optical 3R-regenerator in a fiber transmission experiment,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD16.
  3. M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
    [CrossRef]
  4. J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
    [CrossRef]
  5. A. Bogoni, X. Wu, S. R. Nuccio, and A. E. Willner, “640 Gb/s All-optical regenerator based on a periodically poled lithium niobate waveguide,” J. Lightwave Technol.30(12), 1829–1834 (2012).
    [CrossRef]
  6. J. Wang, H. Ji, H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, P. Jeppesen, J. Yu, and L. K. Oxenløwe, “All-optical 2R regeneration of a 160-Gbit/s RZ-OOK serial data signal using a FOPA,” IEEE Photonics Conference, Burlingame, California, p.MM4 (2012).
  7. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
    [CrossRef]
  8. A. Bogris and D. Syvridis, “Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers,” J. Lightwave Technol.21(9), 1892–1902 (2003).
    [CrossRef]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press 2007).
  10. L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express16(3), 2264–2275 (2008).
    [CrossRef] [PubMed]
  11. J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
    [CrossRef]

2012

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

A. Bogoni, X. Wu, S. R. Nuccio, and A. E. Willner, “640 Gb/s All-optical regenerator based on a periodically poled lithium niobate waveguide,” J. Lightwave Technol.30(12), 1829–1834 (2012).
[CrossRef]

2008

L. Provost, F. Parmigiani, C. Finot, K. Mukasa, P. Petropoulos, and D. J. Richardson, “Analysis of a two-channel 2R all-optical regenerator based on a counter-propagating configuration,” Opt. Express16(3), 2264–2275 (2008).
[CrossRef] [PubMed]

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

2006

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

2003

Bogoni, A.

Bogris, A.

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Finot, C.

Foster, M. A.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Funabashi, M.

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

Gaeta, A. L.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Hu, H.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Jia, D.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Jing, W.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Meng, T.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

Miao, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

Mukasa, K.

Nuccio, S. R.

Paraschis,

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

Parmigiani, F.

Petropoulos, P.

Provost, L.

Richardson, D. J.

Salem, R.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Sun, B.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

Syvridis, D.

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Wang, J.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

Wang, W.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Wang, Y.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Willner, A. E.

Winzer, P. J.

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Wu, X.

Yang, E.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Yoo, S. J. B.

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

Yu, J.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Zhang, A.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Zhang, L.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Zhong Pan, L.

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

Zhu, L.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Zuqing Zhu, M.

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

IEEE Photon. J.

J. Wang, J. Yu, T. Meng, W. Miao, B. Sun, W. Wang, and E. Yang, “Simultaneous 3R regeneration of 4×40-Gbit/s WDM signals in a single fiber,” IEEE Photon. J.4(5), 1816–1822 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Zuqing Zhu, M. Funabashi, L. Zhong Pan, Paraschis, and S. J. B. Yoo, “10 000-hop cascaded in-line all-optical 3R regeneration to achieve 1 250 000-km 10-Gb/s transmission,” IEEE Photon. Technol. Lett.18(5), 718–720 (2006).
[CrossRef]

J. Lightwave Technol.

Microw. Opt. Technol. Lett.

J. Yu, H. Hu, A. Zhang, Y. Wang, L. Zhu, W. Wang, L. Zhang, W. Jing, D. Jia, and E. Yang, “All-optical 3R regeneration based on the XPM effect of semiconductor optical amplifier,” Microw. Opt. Technol. Lett.50(7), 1807–1810 (2008).
[CrossRef]

Nat. Photonics

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Signal regeneration using low-power four-wave mixing on silicon chip,” Nat. Photonics2(1), 35–38 (2008).
[CrossRef]

Opt. Express

Proc. IEEE

P. J. Winzer and R.-J. Essiambre, “Advanced optical modulation formats,” Proc. IEEE94(5), 952–985 (2006).
[CrossRef]

Other

S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G. Weber, “160 Gbit/s optical 3R-regenerator in a fiber transmission experiment,” in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper PD16.

J. Wang, H. Ji, H. Hu, H. C. H. Mulvad, M. Galili, E. Palushani, P. Jeppesen, J. Yu, and L. K. Oxenløwe, “All-optical 2R regeneration of a 160-Gbit/s RZ-OOK serial data signal using a FOPA,” IEEE Photonics Conference, Burlingame, California, p.MM4 (2012).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principles of regeneration using a FOPA. The principle used in this paper is (c).

Fig. 2
Fig. 2

(a) Scheme of the regenerator. (b) Wavelength position of the signals and clocks.

Fig. 3
Fig. 3

FOPA transfer curves for the two channels.

Fig. 4
Fig. 4

Experimental setup of the regeneration of two 160-Gbit/s WDM signals.

Fig. 5
Fig. 5

(a) Spectrum of XPM for clock generation. (b) waveform of the clock at 1533nm.

Fig. 6
Fig. 6

(a) Spectra at input and output of HNLF for Ch1. (b) Spectra at input and output of HNLF for Ch2.

Fig. 7
Fig. 7

160-Gbit/s eye diagrams of degraded and regenerated signal for Channle1 and Channel2.

Fig. 8
Fig. 8

10-Gbit/s BER performance after demultiplexing for Ch1 and Ch2.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

κ=Δ k M +Δ k W +Δ k NL =0
Δ k NL =γ( P clock + P data )

Metrics