Abstract

We study theoretically the joint spectral properties of photon-pairs produced through spontaneous four-wave mixing (SFWM) with two spectrally distinct pump pulses in optical fibers. We show that, due to the group velocity difference between the pulses, the signature of the interaction can be significantly different from spontaneous parametric down-conversion or SFWM with a single pump pulse. Specifically, we study the case where temporal walk-off between the pumps enables a gradual turn-on and turn-off of the interaction. By utilizing this property, we develop a new approach towards tailoring the spectral correlations within the generated photon pairs, demonstrating the ability to produce factorable photon-pair states, and hence heralded single photons in a pure wave-packet. We show that the use of two pumps is advantageous over single-pump SFWM approaches towards this goal: the usage of the dual-pump configuration enables, in principle, the creation of completely factorable states without any spectral filtering, even in media for which single-pump SFWM tailoring techniques are unsatisfactory, such as standard polarization-maintaining fiber.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
    [CrossRef] [PubMed]
  2. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007).
    [CrossRef]
  3. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
    [CrossRef]
  4. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
    [CrossRef] [PubMed]
  5. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
    [CrossRef] [PubMed]
  6. A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).
  7. I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005).
    [CrossRef] [PubMed]
  8. L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
    [CrossRef]
  9. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
    [CrossRef] [PubMed]
  10. L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
    [CrossRef]
  11. J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express13, 5777–5782 (2005).
    [CrossRef] [PubMed]
  12. J. Chen, K. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A76, 031804 (2007).
    [CrossRef]
  13. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons.” Opt. Lett.35, 802–804 (2010).
    [CrossRef] [PubMed]
  14. B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009).
    [CrossRef]
  15. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett.28, 2225–2227 (2003).
    [CrossRef] [PubMed]
  16. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett.26, 367–369 (2001).
    [CrossRef]
  17. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
    [CrossRef] [PubMed]
  18. O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
    [CrossRef] [PubMed]
  19. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17, 4670–4676 (2009).
    [CrossRef] [PubMed]
  20. C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
    [CrossRef]
  21. C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
    [CrossRef]
  22. A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).
  24. R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973).
    [CrossRef]
  25. X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12, 3737–3744 (2004).
    [CrossRef] [PubMed]
  26. H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13, 7832–7839 (2005).
    [CrossRef] [PubMed]
  27. H. Takesue, “Entangled photon pair generation using silicon wire waveguides,” IEEE J. Sel. Top. Quantum Electron.18, 1722–1732 (2012).
    [CrossRef]

2012 (2)

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

H. Takesue, “Entangled photon pair generation using silicon wire waveguides,” IEEE J. Sel. Top. Quantum Electron.18, 1722–1732 (2012).
[CrossRef]

2011 (2)

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
[CrossRef]

2010 (3)

M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons.” Opt. Lett.35, 802–804 (2010).
[CrossRef] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

2009 (3)

2007 (3)

2006 (1)

2005 (4)

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express13, 5777–5782 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13, 7832–7839 (2005).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

2001 (2)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett.26, 367–369 (2001).
[CrossRef]

1997 (1)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

1992 (1)

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

1973 (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

Altepeter, J. B.

Banaszek, K.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Branczyk, A. M.

Brecht, B.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Cemlyn, B.

Chen, J.

J. Chen, K. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A76, 031804 (2007).
[CrossRef]

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12, 3737–3744 (2004).
[CrossRef] [PubMed]

Clark, A.

Coen, S.

Cohen, O.

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Ekert, A. K.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

Erdmann, R.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Fan, J.

Fedrizzi, A.

Fiorentino, M.

Foster, M. A.

Fulconis, J.

Gaeta, A. L.

Garay-Palmett, K.

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007).
[CrossRef]

Grice, W. P.

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Halder, M.

Hall, M. A.

Harvey, J. D.

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Inoue, K.

Ippen, E. P.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973).
[CrossRef]

Joly, N. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Knight, J.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Kumar, P.

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Lee, K.

J. Chen, K. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A76, 031804 (2007).
[CrossRef]

Lee, K. F.

Leonhardt, R.

Li, X.

Lipson, M.

Lundeen, J.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Lundeen, J. S.

Mahou, P.

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Massimo Palma, G.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

McGuinness, H. J.

McKinstrie, C. J.

Medic, M.

Migdall, A.

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

Mosley, P.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Mosley, P. J.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Osorio, C. I.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Patel, M.

Podlipensky, A.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Puentes, G.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Radic, S.

Ralph, T. C.

Rangarajan, R.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Rangel-Rojo, R.

Rarity, J. G.

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17, 4670–4676 (2009).
[CrossRef] [PubMed]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

Raymer, M. G.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005).
[CrossRef] [PubMed]

Russell, P. S. J.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Russell, P. St. J.

Schmidt, B. S.

Sharping, J.

Sharping, J. E.

Silberhorn, C.

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Smith, B.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Smith, B. J.

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009).
[CrossRef]

Söller, C.

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Stace, T. M.

Stolen, R. H.

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973).
[CrossRef]

Takesue, H.

Tapster, P. R.

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007).
[CrossRef]

Torres, J. P.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Turner, A. C.

U’Ren, A. B.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Vicent, L. E.

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Voss, P.

Wadsworth, W. J.

Walmsley, I.

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

Walmsley, I. A.

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

White, A. G.

Wong, G. K. L.

Xiong, C.

Zang, L. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

Zeilinger, A.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

Zhang, L.

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen and E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett.22, 276–278 (1973).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Takesue, “Entangled photon pair generation using silicon wire waveguides,” IEEE J. Sel. Top. Quantum Electron.18, 1722–1732 (2012).
[CrossRef]

J. Mod. Opt. (1)

L. Zhang, C. Söller, O. Cohen, B. J. Smith, and I. A. Walmsley, “Heralded generation of single photons in pure quantum states,” J. Mod. Opt.59, 1525–1537 (2012).
[CrossRef]

Laser Phys. (1)

A. B. U’Ren, C. Silberhorn, R. Erdmann, K. Banaszek, W. P. Grice, I. A. Walmsley, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146–161 (2005).

Nat. Photonics (1)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1, 165–171 (2007).
[CrossRef]

Nature (2)

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997).
[CrossRef]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

L. E. Vicent, A. B. U’Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” New J. Phys.12, 093027 (2010).
[CrossRef]

Opt. Express (8)

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: Improved generation of correlated photons,” Opt. Express12, 3737–3744 (2004).
[CrossRef] [PubMed]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express13, 5777–5782 (2005).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-μm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express13, 7832–7839 (2005).
[CrossRef] [PubMed]

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express14, 12388–12393 (2006).
[CrossRef] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express15, 14870–14886 (2007).
[CrossRef] [PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrowband fibre sources,” Opt. Express17, 4670–4676 (2009).
[CrossRef] [PubMed]

B. J. Smith, P. Mahou, O. Cohen, J. S. Lundeen, and I. A. Walmsley, “Photon pair generation in birefringent optical fibers.” Opt. Express17, 23589–23602 (2009).
[CrossRef]

A. M. Brańczyk, A. Fedrizzi, T. M. Stace, T. C. Ralph, and A. G. White, “Engineered optical nonlinearity for quantum light sources,” Opt. Express19, 55–65 (2011).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (3)

J. Chen, K. Lee, and P. Kumar, “Deterministic quantum splitter based on time-reversed hong-ou-mandel interference,” Phys. Rev. A76, 031804 (2007).
[CrossRef]

C. Söller, B. Brecht, P. J. Mosley, L. Y. Zang, A. Podlipensky, N. Y. Joly, P. S. J. Russell, and C. Silberhorn, “Bridging visible and telecom wavelengths with a single-mode broadband photon pair source,” Phys. Rev. A81, 031801 (2010).
[CrossRef]

C. Söller, O. Cohen, B. J. Smith, I. A. Walmsley, and C. Silberhorn, “High-performance single-photon generation with commercial-grade optical fiber,” Phys. Rev. A83, 031806 (2011).
[CrossRef]

Phys. Rev. Lett. (3)

O. Cohen, J. Lundeen, B. Smith, G. Puentes, P. Mosley, and I. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009).
[CrossRef] [PubMed]

A. K. Ekert, J. G. Rarity, P. R. Tapster, and G. Massimo Palma, “Practical quantum cryptography based on two-photon interferometry,” Phys. Rev. Lett.69, 1293–1295 (1992).
[CrossRef] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987).
[CrossRef] [PubMed]

Science (1)

I. A. Walmsley and M. G. Raymer, “Toward quantum-information processing with photons,” Science307, 1733–1734 (2005).
[CrossRef] [PubMed]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Elsevier, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Phase-matching contours for different detunings of the pumps on (a) slow and (b) fast axes. Thin and thick lines represent signal and idler, respectively. The points at which these lines join indicate degenerate signal and idler.

Fig. 2
Fig. 2

(a) Bottom: Purity as a function of the pumps’ wavelength detuning Δλ in the complete temporal walk-off regime (|στp| ≫ 1) as evaluated using Eq. (15) with r = 1 and λ0 = 715nm. Top: The corresponding minimal detuning Δ f = min ( | ω i 0 ω p 1 0 | , | ω i 0 ω p 2 0 | ) / 2 π between the idler and pumps. The solid (blue) and dashed (red) lines indicate the pumps travel on the slow and fast axis of the fiber, respectively. (b) Bottom: Maximal purity that can generally be achieved (using the JSA given by Eqs. (8)), with pumps on the slow axis, as a function of the pumps’ detuning Δλ, with λ0 = 715nm and L = 9cm. Top: The associated values of |στp|.

Fig. 3
Fig. 3

Joint spectral amplitude of photon pairs generated in PMF, as evaluated using Eq. (6). (a) No temporal walk-off (single pump configuration): Δλ = 0 nm, |στp| = 0. The resulting purity is P = 82%. (b) Appreciable but incomplete walk-off: Δλ = 80 nm, |στp| = 3.2, P = 90%. (c) Complete walk-off regime: Δλ = 260 nm, |στp| = 7.8, P = 99%.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

ω p 1 + ω p 2 = ω s + ω i ,
Δ k = k p 1 ( ω p 1 ) + k p 2 ( ω p 2 ) k s ( ω s ) k i ( ω i ) = 0 ,
k s ( ω ) = k i ( ω ) = k ( ω ) ,
k p 1 ( ω ) = k p 2 ( ω ) = k ( ω ) + Δ n ω c ,
β 2 ( Ω p 2 Ω s i 2 ) + 2 Δ n ω 0 c + O ( Ω p 4 + Ω s i 4 ) = 0 ,
| Ω s i | = 2 Δ n ω 0 β 2 c + Ω p 2 .
| Ψ = d ω s d ω i f ( ω s , ω i ) | ω s , ω i ,
f ( ω s , ω i ) = N 0 L d z d ω p 1 exp [ ( ω p 1 ω p 1 0 σ 1 ) ] 2 exp [ ( ω s + ω i ω p 1 ω p 2 0 σ 2 ) ] × exp ( i ω p 1 τ ) exp ( i Δ k z ) . 2
P = d ω s d ω s d ω i d ω i f ( ω s , ω i ) f * ( ω s , ω i ) f ( ω s , ω i ) f * ( ω s , ω i ) .
F ( ν s , ν i ) = N α ( ν s , ν i ) ϕ ( ν s , ν i ) ,
α ( ν s , ν i ) = exp [ ( ν s + ν i ) 2 σ 1 2 + σ 2 2 ] ,
ϕ ( ν s , ν i ) = exp [ ( T s ν s + T i ν i σ τ p ) 2 ] × [ erf ( σ ( τ + τ p ) 2 + i T s ν s + T i ν i σ τ p ) erf ( σ τ 2 + i T s ν s + T i ν i σ τ p ) ] ,
τ s = L ( k p 1 ( ω p 1 0 ) + k p 2 ( ω p 2 0 ) 2 k s ( ω s 0 ) ) ,
τ i = L ( k p 1 ( ω p 1 0 ) + k p 2 ( ω p 2 0 ) 2 k i ( ω i 0 ) ) ,
τ p = L ( k p 1 ( ω p 1 0 ) k p 2 ( ω p 2 0 ) ) ,
T s T i 0.
L eff = 0 L d z d t I p 1 ( z , t ) I p 2 ( z , t ) d t I p 1 ( z = L / 2 , t ) I p 2 ( z = L / 2 , t ) ,
ϕ | σ τ p | 1 ( ν s , ν i ) = sinc ( T s ν s + T i ν i 2 ) .
L eff = 2 | σ τ p | L .
ϕ | σ τ p | 1 ( ν s , ν i ) = exp [ ( T s ν s + T i ν i σ τ p ) 2 ] .
P = r 2 τ p 2 ( T i T s ) 2 ( r 2 1 + r 2 τ p 2 + ( 1 + r 2 ) T s 2 ) ( r 2 1 + r 2 τ p 2 + ( 1 + r 2 ) T i 2 ) ,
T s T i + ( r 1 + r 2 ) 2 τ p 2 = 0.
f asymmetric ( ν s , ν i ) = N α ( ν s = 0 , ν i ) ϕ ( ν s , ν i = 0 ) .
τ s τ i β 2 L ( ω 0 ω s 0 ) = β 2 L ( ω 0 ω i 0 ) ,
τ p 2 β 2 L ( ω p 1 0 ω 0 ) ,

Metrics