Abstract

In this study, we check the accuracy of the first-order Rytov approximation with a homogeneous sphere as a candidate for application in x-ray phase imaging of large objects e.g., luggage at the airport, or a human patient. Specifically, we propose a validity condition for the Rytov approximation in terms of a parameter V that depends on the complex refractive index of the sphere and the Fresnel number, for Fresnel numbers larger than 1000. In comparison with the exact Mie solution, we provide the accuracy of the Rytov approximation in predicting the intensity and phase profiles after the sphere. For large objects, where the Mie solution becomes numerically impractical, we use the principle of similarity to predict the accuracy of the Rytov approximation without explicit calculation of the Mie solution. Finally, we provide the maximum radius of the sphere for which the first order Rytov approximation remains valid within 1% accuracy.

© 2013 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006).
  2. P. C. Diemoz, A. Bravin, and P. Coan, “Theoretical comparison of three X-ray phase-contrast imaging techniques: propagation-based imaging, analyzer-based imaging and grating interferometry,” Opt. Express20(3), 2789–2805 (2012).
    [CrossRef] [PubMed]
  3. E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
    [CrossRef]
  4. D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
    [CrossRef] [PubMed]
  5. M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
    [CrossRef]
  6. A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
    [CrossRef]
  7. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
    [CrossRef] [PubMed]
  8. T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
    [CrossRef] [PubMed]
  9. S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
    [CrossRef]
  10. X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
    [CrossRef]
  11. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
    [CrossRef]
  12. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
    [CrossRef]
  13. A. J. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett.6(8), 374–376 (1981).
    [CrossRef] [PubMed]
  14. J. B. Keller, “Accuracy and Validity of the Born and Rytov Approximations,” J. Opt. Soc. Am.59, 1003–1004 (1969).
  15. F. Lin and M. Fiddy, “The Born-Rytov controversy: I. Comparing analytical and approximate expressions for the one-dimensional deterministic case,” J. Opt. Soc. Am. A9(7), 1102–1110 (1992).
    [CrossRef]
  16. E. Kirkinis, “Renormalization group interpretation of the Born and Rytov approximations,” J. Opt. Soc. Am. A25(10), 2499–2508 (2008).
    [CrossRef] [PubMed]
  17. M. Slaney and A. Kak, Principles of Computerized Tomographic imaging (SIAM, 1988).
  18. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).
  19. M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
    [CrossRef]
  20. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Optical diffraction tomography for high resolution live cell imaging,” Opt. Express17(1), 266–277 (2009).
    [CrossRef] [PubMed]
  21. E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, 1971).
  22. C. F. Boliren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (J Wiley & Sons, 1983).
  23. A. A. Neves and D. Pisignano, “Effect of finite terms on the truncation error of Mie series,” Opt. Lett.37(12), 2418–2420 (2012).
    [CrossRef] [PubMed]
  24. W. G. Melbourne, Radio Occultations Using Earth Satellites: a Wave Theory Treatment (Wiley-Interscience, 2005).
  25. B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
    [CrossRef]
  26. F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt.23(22), 4140–4148 (1984).
    [CrossRef] [PubMed]

2012 (2)

2009 (1)

2008 (3)

E. Kirkinis, “Renormalization group interpretation of the Born and Rytov approximations,” J. Opt. Soc. Am. A25(10), 2499–2508 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

2006 (1)

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

2005 (1)

X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
[CrossRef]

2002 (1)

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

1997 (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

1996 (1)

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

1995 (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

1993 (1)

B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
[CrossRef]

1992 (1)

1984 (2)

M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
[CrossRef]

F. Slimani, G. Grehan, G. Gouesbet, and D. Allano, “Near-field Lorenz-Mie theory and its application to microholography,” Appl. Opt.23(22), 4140–4148 (1984).
[CrossRef] [PubMed]

1981 (1)

1980 (1)

E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
[CrossRef]

1969 (2)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

J. B. Keller, “Accuracy and Validity of the Born and Rytov Approximations,” J. Opt. Soc. Am.59, 1003–1004 (1969).

Allano, D.

Ando, M.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Arfelli, F.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Badizadegan, K.

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Bravin, A.

Brönnimann, Ch.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Bruder, J.

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

Bunk, O.

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Chapman, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Choi, W.

Cloetens, P.

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

Coan, P.

Dasari, R. R.

David, C.

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Davis, J. C. X.

B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
[CrossRef]

Devaney, A. J.

Diemoz, P. C.

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Fang-Yen, C.

Feld, M. S.

Fiddy, M.

Förster, E.

E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
[CrossRef]

Gao, D.

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Gmür, N.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Goetz, K.

E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
[CrossRef]

Gouesbet, G.

Grehan, G.

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Gullikson, E.

B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
[CrossRef]

Gureyev, T.

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Hattori, T.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Henke, B.

B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
[CrossRef]

Hyodo, K.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Johnston, R. E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Kak, A. C.

M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
[CrossRef]

Keller, J. B.

Kirkinis, E.

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Larsen, L. E.

M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
[CrossRef]

Lin, F.

Liu, H.

X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
[CrossRef]

Maksimenko, A.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Menk, R.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Momose, A.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Neves, A. A.

Pattanasiriwisawa, W.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Pfeiffer, F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

Pisano, E.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Pisignano, D.

Pogany, A.

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Sayers, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Slaney, M.

M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
[CrossRef]

Slimani, F.

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Stevenson, A.

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Sugiyama, H.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Sung, Y.

Suzuki, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Takeda, Y.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Thomlinson, W.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Uyama, C.

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

Washburn, D.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Weitkamp, T.

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

Wilkins, S.

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Wolf, E.

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

Wu, X.

X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
[CrossRef]

Yan, A.

X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
[CrossRef]

Yashiro, W.

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Zaumseil, P.

E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
[CrossRef]

Zhong, Z.

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

At. Data Nucl. Data Tables (1)

B. Henke, E. Gullikson, and J. C. X. Davis, “X-Ray Interactions: Photoabsorption, Scattering, Transmission, and Reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables54(2), 181–342 (1993).
[CrossRef]

Eur. J. Radiol. (1)

T. Weitkamp, C. David, O. Bunk, J. Bruder, P. Cloetens, and F. Pfeiffer, “X-ray phase radiography and tomography of soft tissue using grating interferometry,” Eur. J. Radiol.68(3Suppl), S13–S17 (2008).
[CrossRef] [PubMed]

IEEE Trans. Microw. Theory Tech. (1)

M. Slaney, A. C. Kak, and L. E. Larsen, “Limitations of imaging with first-order diffraction tomography,” IEEE Trans. Microw. Theory Tech.32(8), 860–874 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (2)

M. Ando, A. Maksimenko, H. Sugiyama, W. Pattanasiriwisawa, K. Hyodo, and C. Uyama, “Simple X-ray dark-and bright-field imaging using achromatic Laue optics,” Jpn. J. Appl. Phys.41(Part 2, No. 9A/B), L1016–L1018 (2002).
[CrossRef]

A. Momose, W. Yashiro, Y. Takeda, Y. Suzuki, and T. Hattori, “Phase tomography by X-ray Talbot interferometry for biological imaging,” Jpn. J. Appl. Phys.45(6A), 5254–5262 (2006).
[CrossRef]

Kristall und Technik (1)

E. Förster, K. Goetz, and P. Zaumseil, “Double crystal diffractometry for the characterization of targets for laser fusion experiments,” Kristall und Technik15(8), 937–945 (1980).
[CrossRef]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, Ch. Brönnimann, C. Grünzweig, and C. David, “Hard-X-ray dark-field imaging using a grating interferometer,” Nat. Mater.7(2), 134–137 (2008).
[CrossRef] [PubMed]

Nature (1)

S. Wilkins, T. Gureyev, D. Gao, A. Pogany, and A. Stevenson, “Phase-contrast imaging using polychromatic hard X-rays,” Nature384(6607), 335–338 (1996).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

X. Wu, H. Liu, and A. Yan, “Optimization of X-ray phase-contrast imaging based on in-line holography,” Nucl. Instrum. Methods Phys. Res. B234(4), 563–572 (2005).
[CrossRef]

Opt. Commun. (1)

E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun.1(4), 153–156 (1969).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Med. Biol. (1)

D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisano, N. Gmür, Z. Zhong, R. Menk, F. Arfelli, and D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol.42(11), 2015–2025 (1997).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, and I. Schelokov, “On the possibilities of x‐ray phase contrast microimaging by coherent high‐energy synchrotron radiation,” Rev. Sci. Instrum.66(12), 5486–5492 (1995).
[CrossRef]

Other (6)

D. M. Paganin, Coherent X-ray Optics (Oxford University Press, 2006).

M. Slaney and A. Kak, Principles of Computerized Tomographic imaging (SIAM, 1988).

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, 1999).

E. M. Stein and G. L. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, 1971).

C. F. Boliren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (J Wiley & Sons, 1983).

W. G. Melbourne, Radio Occultations Using Earth Satellites: a Wave Theory Treatment (Wiley-Interscience, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics