Abstract

We propose a countermeasure against the so-called tailored bright illumination attack for differential-phase-shift QKD (DPS-QKD). By monitoring a rate of coincidence detection at a pair of superconducting nanowire single-photon detectors (SSPDs) which is connected at each of the output ports of Bob’s Mach-Zehnder interferometer, Alice and Bob can detect and defeat this kind of attack. We also experimentally confirmed the feasibility of this countermeasure using our 1 GHz-clocked DPS-QKD system. In the emulation of the attack, we achieved much lower power of the bright illumination light compared with the original demonstration by using a pulse stream instead of broad pulses.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
    [CrossRef]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in International Conference on Computers Systems and Signal Processing, (IEEE, 1984), pp. 175–179.
  3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
    [CrossRef] [PubMed]
  4. Towards a wider acceptance of QKD. http://www.uqcc.org/images/towards.pdf
  5. L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
    [CrossRef]
  6. Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
    [CrossRef]
  7. L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
    [CrossRef]
  8. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
    [CrossRef]
  9. L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
    [CrossRef]
  10. K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
    [CrossRef]
  11. T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett.29(23), 2797–2799 (2004).
    [CrossRef] [PubMed]
  12. H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
    [CrossRef]
  13. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
    [CrossRef]
  14. S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37(6), 1008–1010 (2012).
    [CrossRef] [PubMed]
  15. M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011).
    [CrossRef] [PubMed]
  16. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
    [CrossRef]
  17. K. Tamaki, M. Koashi, and G. Kato, “Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization,” arXiv:1208.1995 (2012).
  18. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express18(21), 22199–22207 (2010).
    [CrossRef] [PubMed]
  19. M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, are preparing a manuscript to be called “Characteristic of superconductor single photon detector in QKD system under bright illumination blinding attack.”
  20. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express17(26), 23557–23564 (2009).
    [CrossRef] [PubMed]
  21. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express17(11), 9053–9061 (2009).
    [CrossRef] [PubMed]

2012 (1)

2011 (4)

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011).
[CrossRef] [PubMed]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
[CrossRef]

2010 (3)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express18(21), 22199–22207 (2010).
[CrossRef] [PubMed]

2009 (2)

2007 (1)

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

2006 (1)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
[CrossRef]

2005 (1)

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

2004 (1)

2003 (1)

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
[CrossRef]

2002 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

Akhlaghi, M. K.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

Allacher, A.

Amano, K.

Asai, T.

Chen, W.

Davis, P.

Diamanti, E.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

Dixon, A. R.

Domeki, T.

Dynes, J. F.

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

Elser, D.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Fejer, M. M.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

Fujiwara, M.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Guo, G. C.

Guo, J. F.

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Han, Z. F.

Hasegawa, T.

Hirano, K.

Honjo, T.

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011).
[CrossRef] [PubMed]

T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express17(11), 9053–9061 (2009).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett.29(23), 2797–2799 (2004).
[CrossRef] [PubMed]

Inoue, K.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett.29(23), 2797–2799 (2004).
[CrossRef] [PubMed]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
[CrossRef]

Ishizuka, H.

Klaus, W.

Kobayashi, H.

Länger, T.

Langrock, C.

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

Legré, M.

Li, H. W.

Lydersen, L.

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Majedi, A. H.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

Makarov, V.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Matsui, M.

Maurhart, O.

Miki, S.

Monat, L.

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Nambu, Y.

Okumura, H.

Page, J. B.

Peev, M.

Poppe, A.

Ribordy, G.

Robyr, S.

Sakai, Y.

Sasaki, M.

Sharpe, A. W.

Shields, A. J.

Shimizu, K.

Skaar, J.

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
[CrossRef]

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Someya, H.

Tajima, A.

Takahashi, H.

Takahashi, S.

Takeda, M.

Takeoka, M.

Takesue, H.

M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

Tamaki, K.

Tanaka, A.

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Tokura, T.

Tokura, Y.

Tomita, A.

Trinkler, P.

Tsurumaru, T.

Uchida, A.

Uchikoga, S.

Waks, E.

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
[CrossRef]

Wakui, K.

Wang, S.

Wang, Z.

Wiechers, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Wittmann, C.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
[CrossRef]

Yamashita, T.

Yin, Z. Q.

Yoshimura, K.

Yoshino, K.

Yuan, Z. L.

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Zeilinger, A.

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

Zhou, Z.

J. Mod. Opt. (1)

L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011).
[CrossRef]

Nat. Photonics (3)

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010).
[CrossRef]

Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010).
[CrossRef]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007).
[CrossRef]

New J. Phys. (2)

L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011).
[CrossRef]

H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (3)

E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006).
[CrossRef]

L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011).
[CrossRef]

K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002).
[CrossRef]

Other (4)

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in International Conference on Computers Systems and Signal Processing, (IEEE, 1984), pp. 175–179.

Towards a wider acceptance of QKD. http://www.uqcc.org/images/towards.pdf

K. Tamaki, M. Koashi, and G. Kato, “Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization,” arXiv:1208.1995 (2012).

M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, are preparing a manuscript to be called “Characteristic of superconductor single photon detector in QKD system under bright illumination blinding attack.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup and protocol of DSP-QKD.

Fig. 2
Fig. 2

Tailored bright illumination attack.

Fig. 3
Fig. 3

Pulse pattern in tailored bright illumination attack against DPS-QKD [6]. (a) Blinding phase where both detectors get blind. (b) Recovery phase where one of two detectors connected to port1 becomes clickable, and the other stays blind. (c) Re-blinding phase where detector connected to port1 gets blind again after click, the other stays blind.

Fig. 4
Fig. 4

Count rate as a function of the power of the input light.

Fig. 5
Fig. 5

Experimental setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CCR= 1 4 μTη+d,
K sec = K sift [1(CC R exp CC R est )[(1(2μ(1ηT)) log 2 (1 e 2 (16e) 2 2 )] f(e){e log 2 e(1e) log 2 (1e)}],

Metrics