Abstract

We report enhanced optical transmission (EOT) through a hexagonal aperture surrounded by polygonal segmented grooves to explore its unique polarization dependence. Effects of light polarization on EOT through the hexagonal aperture were systematically investigated for three types of grooves: concentric hexagonal grooves, linear segmented grooves and wedge segmented grooves. Significant increase in EOT was observed for the polarization directed along the groove axis compared to the other orthogonal polarization, which can be further applied to polarization dependent photonic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express14(22), 10410–10425 (2006).
    [CrossRef] [PubMed]
  2. S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
    [CrossRef] [PubMed]
  3. A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
    [CrossRef] [PubMed]
  4. D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).
  5. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
    [CrossRef] [PubMed]
  6. K. Y. Kim, A. V. Goncharenko, J. S. Hong, and K. R. Chen, “Near-field characterization on light emanated from subwavelength plasmonic double slit of finite length,” J. Opt. Soc. Korea15, 196–201 (2011).
  7. H. Nasari and M. S. Abrishamian, “Active focusing of light in plasmonic lens via Kerr effect,” J. Opt. Soc. Korea16, 305–312 (2012).
  8. J. H. Lee, S. K. Hong, and S. W. Nam, “Cooperative spontaneous emission from nanocrystals to a surface plasmon polariton in a metallic nanowire,” J. Opt. Soc. Korea15, 407–414 (2011).
  9. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  10. F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
    [CrossRef] [PubMed]
  11. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
    [CrossRef] [PubMed]
  12. M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express20(24), 26798–26805 (2012).
    [CrossRef] [PubMed]
  13. O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
    [CrossRef] [PubMed]
  14. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
    [CrossRef] [PubMed]
  15. K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
    [CrossRef]
  16. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
    [CrossRef] [PubMed]
  17. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
    [CrossRef] [PubMed]
  18. C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006).
    [CrossRef] [PubMed]
  19. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
    [CrossRef]
  20. N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008).
    [CrossRef] [PubMed]
  21. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  22. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  23. N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
    [CrossRef] [PubMed]
  24. FDTD Lumerical Solutions Inc, www.lumerical.com .
  25. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
    [CrossRef]
  26. J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).
  27. S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express20(5), 4856–4870 (2012).
    [CrossRef] [PubMed]
  28. T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
    [CrossRef]
  29. E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt.44(32), 6898–6904 (2005).
    [CrossRef] [PubMed]
  30. P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006).
    [CrossRef]
  31. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  32. G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).
  33. N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
    [CrossRef]
  34. E. C. Kinzel and X. Xu, “Extraordinary infrared transmission through a periodic bowtie aperture array,” Opt. Lett.35(7), 992–994 (2010).
    [CrossRef] [PubMed]
  35. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005).
    [CrossRef]
  36. Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010).
    [CrossRef]
  37. X. Jiao and S. Blair, “Polarization multiplexed optical bullseye antennas,” Plasmonics7(1), 39–46 (2012).
    [CrossRef]

2012 (4)

2011 (4)

2010 (3)

2008 (5)

2007 (1)

N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
[CrossRef]

2006 (5)

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006).
[CrossRef]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express14(22), 10410–10425 (2006).
[CrossRef] [PubMed]

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

C. K. Chang, D. Z. Lin, C. S. Yeh, C. K. Lee, Y. C. Chang, M. W. Lin, J. T. Yeh, and J. M. Liu, “Similarities and differences for light-induced surface plasmons in one- and two-dimensional symmetrical metallic nanostructures,” Opt. Lett.31(15), 2341–2343 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
[CrossRef]

E. Popov, M. Nevière, A. L. Fehrembach, and N. Bonod, “Enhanced transmission of light through a circularly structured aperture,” Appl. Opt.44(32), 6898–6904 (2005).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005).
[CrossRef]

2004 (5)

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

2003 (2)

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

2002 (3)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

1991 (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).

Abrishamian, M. S.

Alloschery, O.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

Ang, K.-W.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Arabi, H. E.

Blair, S.

X. Jiao and S. Blair, “Polarization multiplexed optical bullseye antennas,” Plasmonics7(1), 39–46 (2012).
[CrossRef]

Bonod, N.

Bradbery, G. W.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Carretero-Palacios, S.

Chang, C. K.

Chang, Y. C.

Chen, K. R.

Choi, S. S.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Cui, X.

de Lesegno, B. V.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

Degiron, A.

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Enoch, S.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Fehrembach, A. L.

Fujikata, J.

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
[CrossRef]

Garcia-Vidal, F. J.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

Gay, G.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

Genet, C.

Gérard, D.

Goncharenko, A. V.

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Gray, S. K.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Hahn, J. W.

Heng, X.

Hong, J. S.

Hong, S. K.

Hugonin, J.

P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
[CrossRef]

Jha, V.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Jiao, X.

X. Jiao and S. Blair, “Polarization multiplexed optical bullseye antennas,” Plasmonics7(1), 39–46 (2012).
[CrossRef]

Jin, E. X.

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005).
[CrossRef]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Kim, D. W.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Kim, K. Y.

Kim, Y. C.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Kinzel, E. C.

Knapp, D. W.

Koerkamp, K. J. K.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Kuipers, L.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Künnemeyer, R.

Kwong, D.-L.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Lalanne, P.

P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006).
[CrossRef]

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Lee, C. K.

Lee, J. H.

Lee, J. Y.

Lesuffleur, A.

N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Lezec, H.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

Lezec, H. J.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Lin, D. Z.

Lin, M. W.

Lindquist, N. C.

N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
[CrossRef]

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Liu, J. M.

Lo, G.-Q.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Mahboub, O.

Martin-Moreno, L.

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

McDowell, E. J.

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Nam, S. W.

Nasari, H.

Nevière, M.

Oh, K.

Oh, S.

N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
[CrossRef]

Ohashi, K.

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
[CrossRef]

Palacios, S. C.

Park, M. J.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Park, S.

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Popov, E.

Pournoury, M.

Psaltis, D.

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Ratner, M. A.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Ren, F.-F.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Rigneault, H.

Rodrigo, S. G.

Rubanov, S.

Sambles, J. R.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).

Schatz, G. C.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Sedoglavich, N.

Segerink, F. B.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Sharpe, J. C.

Shuford, K. L.

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Suwal, O.

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Thio, T.

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

van Hulst, N. F.

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

Weiner, J.

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

Wenger, J.

Wu, J.

Xiong, Z.

Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010).
[CrossRef]

Xu, X.

E. C. Kinzel and X. Xu, “Extraordinary infrared transmission through a periodic bowtie aperture array,” Opt. Lett.35(7), 992–994 (2010).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005).
[CrossRef]

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Yang, C.

Yang, F.

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).

Yaqoob, Z.

Ye, J.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Yeh, C. S.

Yeh, J. T.

Yu, M.

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Zhang, S.

Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010).
[CrossRef]

Zhang, Z.

Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

K. L. Shuford, M. A. Ratner, S. K. Gray, and G. C. Schatz, “Finite-difference time-domain studies of light transmission through nanohole structures,” Appl. Phys. B84(1–2), 11–18 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

N. C. Lindquist, A. Lesuffleur, and S. Oh, “Lateral confinement of surface plasmons and polarization-dependent optical transmission using nanohole arrays with a surrounding rectangular Bragg resonator,” Appl. Phys. Lett.91(25), 253105 (2007).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett.86(11), 111106 (2005).
[CrossRef]

Contemp. Phys. (1)

J. R. Sambles, G. W. Bradbery, and F. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys.32, 173–183 (1991).

J. Opt. Soc. Korea (3)

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, and K. Ohashi, “Large optical transmission through a single subwavelength hole associated with a sharp-apex grating,” Jpn. J. Appl. Phys.44(4), L170–L172 (2005).
[CrossRef]

Mater. Sci. Eng. B (1)

D. W. Kim, Y. C. Kim, O. Suwal, V. Jha, M. J. Park, and S. S. Choi, “Optimization of light-surface plasmon coupling by periodicity regulation for a pyramidal probe,” Mater. Sci. Eng. B149(3), 242–246 (2008).

Nano Lett. (1)

F.-F. Ren, K.-W. Ang, J. Ye, M. Yu, G.-Q. Lo, and D.-L. Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett.11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology13(3), 429–432 (2002).
[CrossRef]

Nat. Phys. (1)

P. Lalanne and J. Hugonin, “Interaction between optical nano-objects at metallo-dielectric interfaces,” Nat. Phys.2(8), 551–556 (2006).
[CrossRef]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun.239(1-3), 61–66 (2004).
[CrossRef]

Opt. Express (10)

N. Sedoglavich, J. C. Sharpe, R. Künnemeyer, and S. Rubanov, “Polarisation and wavelength selective transmission through nanohole structures with multiple grating geometry,” Opt. Express16(8), 5832–5837 (2008).
[CrossRef] [PubMed]

M. Pournoury, H. E. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express20(24), 26798–26805 (2012).
[CrossRef] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. W. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
[CrossRef] [PubMed]

X. Heng, X. Cui, D. W. Knapp, J. Wu, Z. Yaqoob, E. J. McDowell, D. Psaltis, and C. Yang, “Characterization of light collection through a subwavelength aperture from a point source,” Opt. Express14(22), 10410–10425 (2006).
[CrossRef] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. J. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. W. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

A. Degiron and T. W. Ebbesen, “Analysis of the transmission process through single apertures surrounded by periodic corrugations,” Opt. Express12(16), 3694–3700 (2004).
[CrossRef] [PubMed]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express20(5), 4856–4870 (2012).
[CrossRef] [PubMed]

N. Bonod, E. Popov, D. Gérard, J. Wenger, and H. Rigneault, “Field enhancement in a circular aperture surrounded by a single channel groove,” Opt. Express16(3), 2276–2287 (2008).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. Lett. (6)

G. Gay, O. Alloschery, B. V. de Lesegno, J. Weiner, and H. Lezec, “Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry,” Phys. Rev. Lett.96, 213901 (2006).

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett.92(18), 183901 (2004).
[CrossRef] [PubMed]

F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett.90(21), 213901 (2003).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett.90(16), 167401 (2003).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Plasmonics (2)

Z. Zhang, S. Zhang, and Z. Xiong, “Optical properties of silver hollow triangular nanoprisms,” Plasmonics5(4), 411–416 (2010).
[CrossRef]

X. Jiao and S. Blair, “Polarization multiplexed optical bullseye antennas,” Plasmonics7(1), 39–46 (2012).
[CrossRef]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (1)

FDTD Lumerical Solutions Inc, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Perspective and top view of three proposed structures. (a) A hexagonal aperture surrounded by hexagonal grooves. (b) A hexagonal aperture surrounded by linear segmented grooves that extend in an angle of 60° (c) A hexagonal aperture surrounded by wedge segmented grooves. The wedges are bent in an angle of 120°. (d) Schematic diagram of the proposed structure: the silver film with thickness of ‘T’ is structured by ‘N’ grooves with width ‘L’, depth ‘H’, arranged in a periodic pitch of ‘P’, The aperture diameter ‘D’ is measured from side to side of the hexagonal hole, and ‘R’ is the distance between center of aperture and first groove. Input and output surface structures are identical.

Fig. 2
Fig. 2

Schematic view of the FDTD simulation box.

Fig. 3
Fig. 3

Effect of the direction of the polarization of incident light in x-polarization and y-polarization (P = 500 nm, H = 60 nm, L = 250 nm, T = 300 nm, R = 400 nm, D = 300 nm). (a) Normalized transmission versus number of groove for hexagonal aperture surrounded by hexagonal grooves. (b) Normalized transmission versus number of groove for hexagonal aperture surrounded by linear segmented grooves. (c) Normalized transmission versus number of groove for hexagonal aperture surrounded by wedge segmented grooves.

Fig. 4
Fig. 4

(a) Normalized transmission as a function of R for hexagonal aperture surrounded by hexagonal grooves, linear segmented grooves, and wedge segmented grooves (n = 6, p = 500 nm, H = 50 nm, D = 300 nm, L = 250 nm). (b) Normalized transmission as a function of the H for hexagonal aperture surrounded by hexagonal grooves, linear segmented grooves, and wedge segmented grooves (n = 6, p = 500nm, R = 400nm, D = 300nm, L = 250nm).

Fig. 5
Fig. 5

(a) Normalized transmission as a function of D for hexagonal aperture surrounded by hexagonal grooves, linear segmented grooves, and wedge segmented grooves (n = 6, p = 500nm, H = 50nm, R = 350nm, L = 250nm). (b) Normalized transmission versus L for hexagonal aperture surrounded by hexagonal grooves, linear segmented grooves, and wedge segmented grooves (n = 6, p = 500nm, H = 50nm, R = 350nm, D = 350nm).

Fig. 6
Fig. 6

(a) Wavelength as a function of periodicity for hexagonal aperture surrounded by hexagonal grooves with black squares in the y-polarization, linear segmented grooves with red ‘ + ’ shapes in the x-polarization, and wedge segmented grooves with blue circles in the y-polarization (n = 6, L = 200nm, H = 50nm, R = 350nm, D = 350nm). Linear segmented grooves results were fitted by λr ~2.9x10−5P3 −0.044 P2 + 21.82P-3076.6 and wedge segmented grooves λr ~1.2x10−5 P3 −0.044 P2 + 10.54P-1335.5. (b) Transmission spectra of the hexagonal aperture surrounded by hexagonal grooves in the x-polarization and y-polarization versus wavelength, transmission spectra versus wavelength of the hexagonal aperture surrounded linear segmented grooves in the x-polarization and y-polarization, and transmission spectra versus wavelength of the hexagonal aperture surrounded by wedge segmented grooves in the x-polarization and y-polarization (n = 6, p = 500nm, L = 200nm, H = 50nm, R = 350nm, D = 350nm). (c) PER versus wavelength for hexagonal grooves, linear segmented grooves, and wedge segmented grooves (n = 6, p = 500nm, L = 200nm, H = 50nm, R = 350nm, D = 350nm).

Fig. 7
Fig. 7

Distribution of electric field intensity in near-field region. (a) Hexagonal aperture surrounded by hexagonal grooves in the y-polarization. (b) Hexagonal aperture surrounded by linear segmented grooves in the x-polarization. (c) Hexagonal aperture surrounded by wedge segmented grooves in the y-polarization (n = 6, p = 500nm, L = 200nm, H = 50nm, R = 350nm, D = 350nm).

Fig. 8
Fig. 8

Schematic diagram for elongated hexagonal aperture with linear segmented grooves. (a) the hexagonal aperture elongated along the corners (b) hexagonal aperture elongated along the sides.

Fig. 9
Fig. 9

(a) Normalized transmission as a function of the h1 for the aperture elongated along the corners of the hexagon (p = 500 nm, n = 6, L = 250 nm, H = 60 nm, R = 350 nm, D = 350 nm). (b) Normalized transmission as a function of the h2 for the aperture elongated along the sides of the hexagon (p = 500nm, n = 6, L = 250nm, H = 60nm, R = 350nm, D = 350nm).

Metrics