Abstract

A metamodeling approach is introduced and applied to efficiently estimate the bulk optical properties of turbid media from spatially resolved spectroscopy (SRS) measurements. The model has been trained on a set of liquid phantoms covering a wide range of optical properties representative for food and agricultural products and was successfully validated in forward and inverse mode on phantoms not used for training the model. With relative prediction errors of 10% for the estimated bulk optical properties the potential of this metamodeling approach for the estimation of the optical properties of turbid media from spatially resolved spectroscopy measurements has been demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).
  2. V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, 2008).
  3. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
    [CrossRef] [PubMed]
  4. T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
    [CrossRef] [PubMed]
  5. D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
    [CrossRef] [PubMed]
  6. A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
    [CrossRef]
  7. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
    [CrossRef]
  8. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
    [CrossRef] [PubMed]
  9. A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003).
    [CrossRef] [PubMed]
  10. B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
    [CrossRef]
  11. J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000).
    [CrossRef]
  12. A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE65(7), 1030–1061 (1977).
    [CrossRef]
  13. A. Ishimaru, Wave propagation and scattering in random media (Academic, 1978).
  14. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
    [CrossRef]
  15. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  16. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express10(3), 159–170 (2002).
    [CrossRef] [PubMed]
  17. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008).
    [CrossRef] [PubMed]
  18. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009).
    [CrossRef] [PubMed]
  19. A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt.28(12), 2210–2215 (1989).
    [CrossRef] [PubMed]
  20. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
    [CrossRef] [PubMed]
  21. A. Kienle and M. S. Patterson, “Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium,” J. Opt. Soc. Am. A14(1), 246–254 (1997).
    [CrossRef] [PubMed]
  22. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
    [CrossRef] [PubMed]
  23. I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
    [CrossRef]
  24. D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).
  25. T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
    [CrossRef]
  26. G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007).
    [CrossRef]
  27. J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt.40(7), 1155–1164 (2001).
    [CrossRef] [PubMed]
  28. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996).
    [CrossRef] [PubMed]
  29. L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
    [CrossRef]
  30. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
    [CrossRef] [PubMed]
  31. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]
  32. I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
    [CrossRef]
  33. D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
    [CrossRef]
  34. J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
    [CrossRef]
  35. J. Staum, “Better simulation metamodeling: The why, what, and how of stochastic Kriging,” in Proceedings of the Winter Simulation Conference (Austin, TX, 2009), pp. 119–133.
    [CrossRef]
  36. I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.
  37. D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
    [CrossRef]
  38. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  39. P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18(26), 26854–26865 (2010).
    [CrossRef] [PubMed]
  40. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  41. E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
    [CrossRef] [PubMed]

2012

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

2011

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

2010

P. Di Ninni, F. Martelli, and G. Zaccanti, “The use of India ink in tissue-simulating phantoms,” Opt. Express18(26), 26854–26865 (2010).
[CrossRef] [PubMed]

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
[CrossRef]

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

2009

2008

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008).
[CrossRef] [PubMed]

D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
[CrossRef]

2007

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007).
[CrossRef]

2006

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

2005

2004

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

2003

2002

2001

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt.40(7), 1155–1164 (2001).
[CrossRef] [PubMed]

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

2000

J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000).
[CrossRef]

1999

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

1998

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
[CrossRef] [PubMed]

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
[CrossRef]

1997

1996

1995

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

1992

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

1991

1989

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt.28(12), 2210–2215 (1989).
[CrossRef] [PubMed]

1977

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE65(7), 1030–1061 (1977).
[CrossRef]

1973

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Aladangady, N.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008).
[CrossRef] [PubMed]

Alexandrakis, G.

Allen, J. K.

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

Andersson-Engels, S.

Arifler, D.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Aruna, P.

Avrillier, S.

Bamelis, F.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Bassi, A.

Boas, D.

Boas, D. A.

Bressloff, N. W.

D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
[CrossRef]

Chance, B.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

Chang, T.-H.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Costeloe, K.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Couckuyt, I.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.

Crombecq, K.

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

Culver, J.

Dalgaard, T.

Dam, J. S.

Danesini, G.

De Baerdemaeker, J.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

De Ketelaere, B.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

De Turck, F.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

Declerq, F.

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

Decuypere, E.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Delpy, D. T.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Demeester, P.

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

Dhaene, T.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.

Di Ninni, P.

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Dunn, A.

Duvic, M.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Elwell, C. E.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Fabricius, P. E.

Fang, Q.

Farrell, T. J.

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Follen, M.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Forrester, A.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

Garcia-Uribe, A.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Giambattistelli, E.

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Gorissen, D.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.

Grosenick, D.

Guan, B.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

Hale, G. M.

Hibst, R.

Huang, S.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

Ishimaru, A.

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt.28(12), 2210–2215 (1989).
[CrossRef] [PubMed]

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE65(7), 1030–1061 (1977).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Jones, D. R.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
[CrossRef]

Kaipio, J. P.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

Keane, A. J.

D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
[CrossRef]

Kienle, A.

Knockaert, L.

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

Koch, P. N.

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

Kolehmainen, V.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Le Pommellec, J. Y.

J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000).
[CrossRef]

Leung, T. S.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

L'Huillier, J. P.

J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000).
[CrossRef]

Lilge, L.

MacAulay, C.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Macdonald, R.

Martelli, F.

Mitchell, T.

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

Moes, C. J. M.

Möller, M.

Nghiem, H. L.

Patterson, M. S.

Pedersen, C. B.

Pifferi, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Poplinsky, J. D.

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

Prahl, S. A.

Prieto, V.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Querry, M. R.

Richards-Kortum, R.

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

Rogier, H.

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

Sacks, J.

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

Saeys, W.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Schonlau, M.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
[CrossRef]

Shan, S.

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007).
[CrossRef]

Simpson, T. W.

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

Spinelli, L.

Stamm, H.

Staum, J.

J. Staum, “Better simulation metamodeling: The why, what, and how of stochastic Kriging,” in Proceedings of the Winter Simulation Conference (Austin, TX, 2009), pp. 119–133.
[CrossRef]

Steiner, R.

Sterenborg, H. J. C. M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Stott, J.

Svensson, T.

Swartling, J.

Taroni, P.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

Tarvainen, T.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

Toal, D. J. J.

D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
[CrossRef]

Torricelli, A.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Torricelli, L. Spinelli, A. Pifferi, P. Taroni, R. Cubeddu, and G. Danesini, “Use of a nonlinear perturbation approach for in vivo breast lesion characterization by multiwavelength time-resolved optical mammography,” Opt. Express11(8), 853–867 (2003).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

Trong, N. N.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Tsuta, M.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Tualle, J.-M.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

van Veen, R. L. P.

Vauhkonen, M.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

Verhoelst, E.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Wabnitz, H.

Wang, G. G.

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007).
[CrossRef]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wang, L. V.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Wang, Z.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
[CrossRef]

Welch, W. J.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
[CrossRef]

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

Whelan, M.

Wilson, B.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Wilson, B. C.

Wynn, H. P.

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

Zaccanti, G.

Zhang, L.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
[CrossRef]

Zhang, Y.

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Zhou, M.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
[CrossRef]

Zou, J.

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Adv. Eng. Soft.

I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene, “Blind Kriging: Implementation and performance analysis,” Adv. Eng. Soft.49, 1–13 (2012).
[CrossRef]

AIAA J.

D. J. J. Toal, N. W. Bressloff, and A. J. Keane, “Kriging Hyperparameter Tuning Strategies,” AIAA J.46(5), 1240–1252 (2008).
[CrossRef]

Appl. Opt.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
[CrossRef] [PubMed]

J. S. Dam, C. B. Pedersen, T. Dalgaard, P. E. Fabricius, P. Aruna, and S. Andersson-Engels, “Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths,” Appl. Opt.40(7), 1155–1164 (2001).
[CrossRef] [PubMed]

A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, “Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue,” Appl. Opt.35(13), 2304–2314 (1996).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J.-M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Ishimaru, “Diffusion of light in turbid material,” Appl. Opt.28(12), 2210–2215 (1989).
[CrossRef] [PubMed]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt.37(31), 7401–7409 (1998).
[CrossRef] [PubMed]

Appl. Phys. Lett.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Noninvasive absorption and scattering spectroscopy of bulk diffusive media: An application to the optical characterization of human breast,” Appl. Phys. Lett.74(6), 874–876 (1999).
[CrossRef]

Biotechnol. Prog.

E. Verhoelst, F. Bamelis, B. De Ketelaere, N. N. Trong, J. De Baerdemaeker, W. Saeys, M. Tsuta, and E. Decuypere, “The potential of spatially resolved spectroscopy for monitoring angiogenesis in the chorioallantoic membrane,” Biotechnol. Prog.27(6), 1785–1792 (2011).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995).
[CrossRef] [PubMed]

Eng. Comput.

T. W. Simpson, J. D. Poplinsky, P. N. Koch, and J. K. Allen, “Meta-models for computer-based engineering design: survey and recommendations,” Eng. Comput.17(2), 129–150 (2001).
[CrossRef]

Int. J. Numer. Methods Eng.

T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng.65(3), 383–405 (2006).
[CrossRef]

Int. J. RF Microw. C. E.

I. Couckuyt, F. Declerq, T. Dhaene, H. Rogier, and L. Knockaert, “Surrogate-Based Infill Optimization Applied to Electromagnetic Problems,” Int. J. RF Microw. C. E.20(5), 492–501 (2010).
[CrossRef]

J. Biomed. Opt.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008).
[CrossRef] [PubMed]

D. Arifler, C. MacAulay, M. Follen, and R. Richards-Kortum, “Spatially resolved reflectance spectroscopy for diagnosis of cervical precancer: Monte Carlo modeling and comparison to clinical measurements,” J. Biomed. Opt.11(6), 064027 (2006).
[CrossRef] [PubMed]

J. Glob. Optim.

D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive black-box functions,” J. Glob. Optim.13(4), 455–492 (1998).
[CrossRef]

J. Mach. Learn. Res.

D. Gorissen, I. Couckuyt, P. Demeester, T. Dhaene, and K. Crombecq, “A Surrogate Modeling and Adaptive Sampling Toolbox for Computer Based Design,” J. Mach. Learn. Res.11, 2051–2055 (2010).

J. Mech. Des.

G. G. Wang and S. Shan, “Review of metamodeling techniques in support of engineering design optimization,” J. Mech. Des.129(4), 370–380 (2007).
[CrossRef]

J. Mod. Opt.

L. Zhang, Z. Wang, and M. Zhou, “Determination of the optical coefficients of biological tissue by neural network,” J. Mod. Opt.57(13), 1163–1170 (2010).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992).
[CrossRef] [PubMed]

Opt. Express

Pediatr. Res.

T. S. Leung, N. Aladangady, C. E. Elwell, D. T. Delpy, and K. Costeloe, “A new method for the measurement of cerebral blood volume and total circulating blood volume using near infrared spatially resolved spectroscopy and indocyanine green: application and validation in neonates,” Pediatr. Res.55(1), 134–141 (2004).
[CrossRef] [PubMed]

Phys. Med. Biol.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol.46(8), 2227–2237 (2001).
[CrossRef] [PubMed]

Proc. IEEE

A. Ishimaru, “Theory and application of wave propagation and scattering in random media,” Proc. IEEE65(7), 1030–1061 (1977).
[CrossRef]

Proc. SPIE

B. Guan, Y. Zhang, S. Huang, and B. Chance, “Determination of optical properties using improved frequency-resolved spectroscopy,” Proc. SPIE3548, 17–26 (1998).
[CrossRef]

J. Y. Le Pommellec and J. P. L'Huillier, “Determination of the optical properties of breast tissues using frequency-resolved transillumination: basic theory and preliminary results,” Proc. SPIE4161, 202–215 (2000).
[CrossRef]

A. Garcia-Uribe, J. Zou, T.-H. Chang, M. Duvic, V. Prieto, and L. V. Wang, “Oblique-incidence spatially resolved diffuse reflectance spectroscopic diagnosis of skin cancer,” Proc. SPIE7572, 75720L (2010).
[CrossRef]

Stat. Sci.

J. Sacks, W. J. Welch, T. Mitchell, and H. P. Wynn, “Design and analysis of computer experiments,” Stat. Sci.4(4), 423–435 (1989).
[CrossRef]

Other

J. Staum, “Better simulation metamodeling: The why, what, and how of stochastic Kriging,” in Proceedings of the Winter Simulation Conference (Austin, TX, 2009), pp. 119–133.
[CrossRef]

I. Couckuyt, K. Crombecq, D. Gorissen, and T. Dhaene, “Automated response surface model generation with sequential design,” in Proceedings of First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, (Funchal, 2009), p. 52.

V. Tuchin, Tissue Optics – Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007).

V. Tuchin, Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues (CRC Press, 2008).

A. Ishimaru, Wave propagation and scattering in random media (Academic, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic illustration of the spatially resolved spectroscopy setup.

Fig. 2
Fig. 2

(a) Absorption coefficient spectra of liquid phantoms with the same scattering level A, but different absorption levels; (b) Reduced scattering coefficient spectra of liquid phantoms with the same absorption level 1, but different scattering levels.

Fig. 3
Fig. 3

Spatially resolved diffuse reflectance profiles at 800 nm of four phantoms A1 (low scattering, low absorption), A6 (low scattering, high absorption), F1 (high scattering, low absorption), and F6 (high scattering, high absorption).

Fig. 4
Fig. 4

Scatter plots of predicted versus measured diffuse reflectance values in calibration (light grey) and cross-validation (black) for the 5 detection fibers: Fiber 1 (a), Fiber 2 (b), Fiber 3 (c), Fiber 4 (d), and Fiber 5 (e).

Fig. 5
Fig. 5

Measured and predicted spatially resolved diffuse reflectance profiles at 700 nm of phantom D3.

Fig. 6
Fig. 6

Scatter plots of predicted versus measured optical properties of the 16 validation phantoms: (a): absorption coefficients µa; (b): reduced scattering coefficients µs. Six outliers were removed (< 0.4%).

Tables (1)

Tables Icon

Table 1 Selection of validation phantoms in the data set. Sixteen phantoms in blank cells were selected as validation phantoms in the sixteen validation steps.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

minF=min i=1 N ( I i,meas I i,sim I i,meas ) 2
RMSEC= i=1 i= N C ( R i,meas R i,pred ) 2 N C
RMSECV= i=1 i= N CV ( R i,meas R i,pred ) 2 N CV
RMSECV= i=1 i= N CV ( μ i,meas μ i,pred ) 2 N CV

Metrics