Abstract

We develop a prototype of optically-steered X-band phased array antenna with capabilities of multi-band and multi-beam operations. It exploits high-speed wavelength tunable lasers for optical true-time delays over a dispersive optical fiber link, enabling agile, broadband and vibration-free RF beam steering with large angle.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Hansen, Phased Array Antennas (Wiley and Co., 1998).
  2. R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 1994).
  3. M. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).
  4. J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).
  5. W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
    [CrossRef]
  6. H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
    [CrossRef]
  7. Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42(13), 2273–2277 (2003).
    [CrossRef] [PubMed]
  8. B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
    [CrossRef]
  9. R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express19(6), 5371–5378 (2011).
    [CrossRef] [PubMed]
  10. N. A. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photon. Technol. Lett.4(7), 807–809 (1992).
    [CrossRef]
  11. K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
    [CrossRef]
  12. I. Samil Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process.51(6), 1663–1668 (2003).
    [CrossRef]
  13. Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
    [CrossRef]
  14. J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
    [CrossRef]
  15. R. A. Minasian and K. E. Alameh, “High capacity optical beam forming for phased arrays with fiber gratings and frequency conversion for beat noise control,” Appl. Opt.38(21), 4665–4670 (1999).
    [CrossRef] [PubMed]
  16. Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express18(17), 17859–17864 (2010).
    [CrossRef] [PubMed]
  17. T. J. Eom, S. J. Kim, T. Y. Kim, C. S. Park, and B. Lee, “Optical pulse multiplication and temporal coding using true time delay achieved by long-period fiber gratings in dispersion compensating fiber,” Opt. Express12(26), 6410–6420 (2004).
    [CrossRef] [PubMed]
  18. S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
    [CrossRef]
  19. S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng.49(1), 018201 (2010).
    [CrossRef]
  20. M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
    [CrossRef]
  21. I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population oscillations in SOAs,” Opt. Express18(25), 25677–25692 (2010).
    [CrossRef] [PubMed]
  22. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010).
    [CrossRef] [PubMed]
  23. W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express19(13), 12312–12324 (2011).
    [CrossRef] [PubMed]
  24. J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
    [CrossRef]
  25. K. M. Madziar and J. Dawidczyk, “Modelling of the dispersion coefficient for the optical beam forming for phased array anttneas,” Proc. SPIE6347, 6347101–6347106 (2006).
  26. N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
    [CrossRef]

2012

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

2011

2010

2008

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

2007

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
[CrossRef]

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

2006

K. M. Madziar and J. Dawidczyk, “Modelling of the dispersion coefficient for the optical beam forming for phased array anttneas,” Proc. SPIE6347, 6347101–6347106 (2006).

2004

T. J. Eom, S. J. Kim, T. Y. Kim, C. S. Park, and B. Lee, “Optical pulse multiplication and temporal coding using true time delay achieved by long-period fiber gratings in dispersion compensating fiber,” Opt. Express12(26), 6410–6420 (2004).
[CrossRef] [PubMed]

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

2003

I. Samil Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process.51(6), 1663–1668 (2003).
[CrossRef]

Y. Liu, J. P. Yao, and J. Yang, “Wideband true-time-delay beam former that employs a tunable chirped fiber grating prism,” Appl. Opt.42(13), 2273–2277 (2003).
[CrossRef] [PubMed]

2000

S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
[CrossRef]

1999

1998

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

1997

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

1996

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

1992

N. A. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photon. Technol. Lett.4(7), 807–809 (1992).
[CrossRef]

1991

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Alameh, K. E.

Andrés, M. V.

Arslan, T.

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

Barmenkov, Y. O.

Berger, P.

Bernstein, N.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Bourderionnet, J.

Bucholtz, F.

Capmany, J.

Chen, M. Y.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

Chen, R. T.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
[CrossRef]

Chen, W.

Chin, S.

Corral, J. L.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

Cruz, J. L.

Dawidczyk, J.

K. M. Madziar and J. Dawidczyk, “Modelling of the dispersion coefficient for the optical beam forming for phased array anttneas,” Proc. SPIE6347, 6347101–6347106 (2006).

Díez, A.

Doi, M.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Dolfi, D.

Duan, B.

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

Eom, T. J.

Erdogan, A. T.

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

Fathpour, S.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng.49(1), 018201 (2010).
[CrossRef]

Flynn, B.

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

Foshee, J.

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
[CrossRef]

Fuster, J. M.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

Gasulla, I.

Han, W.

Hashimoto, N.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Inagaki, K.

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

Ji, Y.

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

Johns, S.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

Jung, B. M.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
[CrossRef]

Karasawa, Y.

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

Kim, B. G.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
[CrossRef]

Kim, S. J.

Kim, T. Y.

Laming, R. I.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

Lee, B.

Lee, J. J.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Li, W.

Liu, J. G.

Liu, Y.

Lloret, J.

Madziar, K. M.

K. M. Madziar and J. Dawidczyk, “Modelling of the dispersion coefficient for the optical beam forming for phased array anttneas,” Proc. SPIE6347, 6347101–6347106 (2006).

Marti, J.

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

Minasian, R. A.

Miura, R.

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

Morito, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Nakazawa, T.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Nehorai, A.

I. Samil Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process.51(6), 1663–1668 (2003).
[CrossRef]

Newberg, I. L.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Noordin, N. H.

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

Park, C. S.

Payson, P.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

Qi, X. Q.

Riza, N. A.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng.49(1), 018201 (2010).
[CrossRef]

N. A. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photon. Technol. Lett.4(7), 807–809 (1992).
[CrossRef]

Sales, S.

Samil Yetik, I.

I. Samil Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process.51(6), 1663–1668 (2003).
[CrossRef]

Sancho, J.

Schermer, R. T.

Shin, J. D.

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
[CrossRef]

Soref, R. A.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

Subbaraman, H.

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

Takabayashi, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Takada, K.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Tang, S.

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
[CrossRef]

Tang, Y.

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

Tangonan, G.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Thévenaz, L.

Tomabechi, S.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Toughlian, E. N.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

Villarruel, C. A.

Walston, A. A.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Wang, J. S.

Wang, L. X.

Wang, X.

Xie, L.

Yang, J.

Yao, J. P.

Zhu, N. H.

Zmuda, H.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. Takabayashi, K. Takada, N. Hashimoto, M. Doi, S. Tomabechi, T. Nakazawa, and K. Morito, “Widely (132 nm) wavelength tunable laser using a semiconductor optical amplifier and an acousto-optic tunable filter,” Electron. Lett.40(19), 1187–1188 (2004).
[CrossRef]

Y. Ji, K. Inagaki, R. Miura, and Y. Karasawa, “Optical processor for multibeam microwave receive array antennas,” Electron. Lett.32(9), 822–824 (1996).
[CrossRef]

J. L. Corral, J. Marti, J. M. Fuster, and R. I. Laming, “Dispersion-induced bandwidth limitation of variable true time delay lines based on linearly chirped fiber gratings,” Electron. Lett.34(2), 209–211 (1998).
[CrossRef]

IEEE Circuits and Devices

S. Tang, R. T. Chen, and J. Foshee, “Polymeric waveguide circuits for airborne photonic phased array antennas,” IEEE Circuits and Devices16(1), 10–16 (2000).
[CrossRef]

IEEE Photon. Soc. Newsletter

J. P. Yao, “A tutorial on microwave photonics,” IEEE Photon. Soc. Newsletter26(2), 4–12 (2012).

IEEE Photon. Technol. Lett.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, and E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photon. Technol. Lett.9(2), 241–243 (1997).
[CrossRef]

N. A. Riza, “An acoustooptic-phased-array antenna beamformer for multiple simultaneous beam generation,” IEEE Photon. Technol. Lett.4(7), 807–809 (1992).
[CrossRef]

M. Y. Chen, H. Subbaraman, and R. T. Chen, “Photonic crystal fiber beamformer for multiple X-band phased-array antenna transmissions,” IEEE Photon. Technol. Lett.20(5), 375–377 (2008).
[CrossRef]

B. M. Jung, J. D. Shin, and B. G. Kim, “Optical true time-delay for two-dimensional X-band phased array antennas,” IEEE Photon. Technol. Lett.19(12), 877–879 (2007).
[CrossRef]

IEEE Trans. Signal Process.

I. Samil Yetik and A. Nehorai, “Beamforming using the fractional Fourier transform,” IEEE Trans. Signal Process.51(6), 1663–1668 (2003).
[CrossRef]

IET Microw. Antennas Propag.

N. H. Noordin, T. Arslan, B. Flynn, and A. T. Erdogan, “Low-cost antenna array with wide scan angle property,” IET Microw. Antennas Propag.6(15), 1717–1727 (2012).
[CrossRef]

J. Lightwave Technol.

W. Ng, A. A. Walston, G. Tangonan, J. J. Lee, I. L. Newberg, and N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time-delay,” J. Lightwave Technol.9(9), 1124–1131 (1991).
[CrossRef]

Opt. Eng.

S. Fathpour and N. A. Riza, “Silicon-photonics-based wideband radar beamforming: basic design,” Opt. Eng.49(1), 018201 (2010).
[CrossRef]

Opt. Express

T. J. Eom, S. J. Kim, T. Y. Kim, C. S. Park, and B. Lee, “Optical pulse multiplication and temporal coding using true time delay achieved by long-period fiber gratings in dispersion compensating fiber,” Opt. Express12(26), 6410–6420 (2004).
[CrossRef] [PubMed]

Y. O. Barmenkov, J. L. Cruz, A. Díez, and M. V. Andrés, “Electrically tunable photonic true-time-delay line,” Opt. Express18(17), 17859–17864 (2010).
[CrossRef] [PubMed]

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

I. Gasulla, J. Sancho, J. Capmany, J. Lloret, and S. Sales, “Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population oscillations in SOAs,” Opt. Express18(25), 25677–25692 (2010).
[CrossRef] [PubMed]

R. T. Schermer, F. Bucholtz, and C. A. Villarruel, “Continuously-tunable microwave photonic true-time-delay based on a fiber-coupled beam deflector and diffraction grating,” Opt. Express19(6), 5371–5378 (2011).
[CrossRef] [PubMed]

W. Li, N. H. Zhu, L. X. Wang, J. S. Wang, J. G. Liu, Y. Liu, X. Q. Qi, L. Xie, W. Chen, X. Wang, and W. Han, “True-time delay line with separate carrier tuning using dual-parallel MZM and stimulated Brillouin scattering-induced slow light,” Opt. Express19(13), 12312–12324 (2011).
[CrossRef] [PubMed]

Proc. SPIE

J. Foshee, S. Tang, Y. Tang, X. Wang, and B. Duan, “A novel high-speed electro-optic beam scanner based on KTN crystals,” Proc. SPIE6709, 670908 (2007).
[CrossRef]

K. M. Madziar and J. Dawidczyk, “Modelling of the dispersion coefficient for the optical beam forming for phased array anttneas,” Proc. SPIE6347, 6347101–6347106 (2006).

Other

R. C. Hansen, Phased Array Antennas (Wiley and Co., 1998).

R. J. Mailloux, Phased Array Antenna Handbook (Artech House, 1994).

M. Skolnik, Introduction to Radar Systems (McGraw-Hill, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic architecture of proposed photonic PAA. WTL: high-speed wavelength tunable laser; EOM: electro-optic modulator; RFTO: RF tunable oscillator; AMP: low-noise amplifier; PMF: polarization-maintaining fiber; FS: fiber splitter; DCF: dispersion compensating fiber; TGF: telecommunication grade fiber; PDA: photodetector array; PTA: phase trimmer array; AA: antenna array.

Fig. 2
Fig. 2

(a) Front and (b) back views of the optically-steered X-band PAA prototype.

Fig. 3
Fig. 3

RF beam steered angles of different frequencies as a function of optical wavelength. The solid line is calculated result.

Fig. 4
Fig. 4

Display of optically steering of two RF beams with our X-band PPA. (a) Both RF beams are detected with the two lasers tuned to the same wavelength. Only one RF beam of 8.58GHz (b) and 9.11GHz (c) is steered by changing the wavelength of associated laser.

Metrics