Abstract

We present the design, realization and characterization of strong coupling between an intersubband transition and a monolithic metamaterial nanocavity in the mid-infrared spectral range. We use a ground plane in conjunction with a planar metamaterial resonator for full three-dimensional confinement of the optical mode. This reduces the mode volume by a factor of 1.9 compared to a conventional metamaterial resonator while maintaining the same Rabi frequency. The conductive ground plane is implemented using a highly doped n+ layer which allows us to integrate it monolithically into the device and simplify fabrication.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
    [CrossRef]
  3. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
    [CrossRef] [PubMed]
  4. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
    [CrossRef]
  5. D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
    [CrossRef] [PubMed]
  6. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
    [CrossRef]
  7. G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
    [CrossRef] [PubMed]
  8. G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
    [CrossRef] [PubMed]
  9. M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
    [CrossRef]
  10. A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
    [CrossRef] [PubMed]
  11. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express14(5), 1957–1964 (2006).
    [CrossRef] [PubMed]
  12. R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2–3), 309–312 (2002).
    [CrossRef]
  13. P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
    [CrossRef]
  14. D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19(14), 13700–13706 (2011).
    [CrossRef] [PubMed]
  15. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
    [CrossRef] [PubMed]
  16. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
    [CrossRef]
  17. X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
    [CrossRef]
  18. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
    [CrossRef] [PubMed]
  19. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  20. J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
    [CrossRef] [PubMed]
  21. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
    [CrossRef] [PubMed]
  22. H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).
  23. A. Gabbay and I. Brener, “Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells,” Opt. Express20(6), 6584–6597 (2012).
    [CrossRef] [PubMed]
  24. A. Gabbay, J. Reno, J. R. Wendt, A. Gin, M. C. Wanke, M. B. Sinclair, E. Shaner, and I. Brener, “Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells,” Appl. Phys. Lett. 98, 203103–203101:203103 (2011).
    [CrossRef]
  25. J. D. Jackson, Classical electrodynamics (Wiley, New York, 1975).
  26. A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98, 111110 111111–111113 (2011).
  27. J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
    [CrossRef]
  28. R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
    [CrossRef]
  29. K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 083101–083104 (2007).
  30. D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
    [CrossRef]
  31. G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
    [CrossRef]
  32. M. Born and E. Wolf, Principles of optics (University Press, Cambridge, UK, 2002).
  33. Lumerical, retrieved http://www.lumerical.com .
  34. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
    [CrossRef]
  35. K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
    [CrossRef]
  36. R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
    [CrossRef]
  37. M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
    [CrossRef]
  38. M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
    [CrossRef] [PubMed]
  39. Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
    [CrossRef] [PubMed]
  40. G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
    [CrossRef]
  41. D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
    [CrossRef]

2013

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
[CrossRef] [PubMed]

2012

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

A. Gabbay and I. Brener, “Theory and modeling of electrically tunable metamaterial devices using inter-subband transitions in semiconductor quantum wells,” Opt. Express20(6), 6584–6597 (2012).
[CrossRef] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

2011

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19(14), 13700–13706 (2011).
[CrossRef] [PubMed]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

2010

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

2009

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

2008

2007

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

2006

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express14(5), 1957–1964 (2006).
[CrossRef] [PubMed]

2005

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

2004

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

2003

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2–3), 309–312 (2002).
[CrossRef]

2000

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

1986

D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
[CrossRef]

1983

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

1970

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Anappara, A. A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Andrews, A. M.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Antoniou, N.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Armitage, A.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Barnes, W. L.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Bastard, G.

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

Beaudoin, G.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

Beck, M.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Benz, A.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Biasiol, G.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Bradley, D. D. C.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Brener, I.

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Capasso, F.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Capolino, F.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

Castellano, F.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Chang, L. L.

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

Chemla, D.

D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
[CrossRef]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Chen, X.

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

Chiau, C. C.

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Ciuti, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Colombelli, R.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Darmo, J.

Davids, P. S.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

De Liberato, S.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Degl’Innocenti, R.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

Delteil, A.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Dietze, D.

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Donzelli, G.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

Ebadifallah, E.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Ebbesen, T. W.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Esaki, L.

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

Faist, J.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Feuillet Palma, C.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

Gabbay, A.

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Geiser, M.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Günter, G.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Hagenmüller, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Han, J.

Hees, J.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Hu, E.

K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Huber, R.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ishii, S.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Jouy, P.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Katouli, M.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
[CrossRef] [PubMed]

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

Kim, J. K.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Klang, P.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Klein, M. W.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

Klem, J. F.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Leitenstorfer, A.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Leonhardt, D.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Liang, J.

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

Lidzey, D. G.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Lin, J.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Linden, S.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

Loudon, R.

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

Maier, S. A.

Maissen, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Menard, J.-M.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

Mendez, E. E.

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
[CrossRef]

Mueller, J. P. B.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Naser-Moghadasi, M.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Nevou, L.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Ni, X.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

O’Hara, J. F.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Ou, J. Y.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

Parini, C. G.

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

Peters, D. W.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Plum, E.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Porer, M.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

Reichl, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Reinke, C. M.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Renaudat St-Jean, M.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Rousta, H.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Ruppin, R.

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2–3), 309–312 (2002).
[CrossRef]

Russell, K. J.

K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Sadeghzadeh-Sheikhan, R. A.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Sagnes, I.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

Samora, S.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Scalari, G.

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Schuchinsky, A.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

Schuh, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Sell, A.

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Shalaev, V. M.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Shields, A. J.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

Singh, R.

Sirtori, C.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Skolnick, M. S.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Smirnova, E.

Sorba, L.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Strasser, G.

D. Dietze, A. Benz, G. Strasser, K. Unterrainer, and J. Darmo, “Terahertz meta-atoms coupled to a quantum well intersubband transition,” Opt. Express19(14), 13700–13706 (2011).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Tanaka, K.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, “Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations,” Opt. Express16(3), 1786–1795 (2008).
[CrossRef] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Todorov, Y.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Tredicucci, A.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Tritschler, T.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

Turcinková, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Uchino, T.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Unterrainer, K.

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vallecchi, A.

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

Vasanelli, A.

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Virdee, B. S.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

Walker, S.

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

Wang, Q.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Wegener, M.

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

Wegscheider, W.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

Weiner, J. S.

D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
[CrossRef]

Wendt, J. R.

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Yeung, K. Y. M.

K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yuan, G.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Yuan, X.-C.

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

Zanotto, S.

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Zhang, W.

Zheludev, N. I.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. Jouy, A. Vasanelli, Y. Todorov, A. Delteil, G. Biasiol, L. Sorba, and C. Sirtori, “Transition from strong to ultrastrong coupling regime in mid-infrared metal-dielectric-metal cavities,” Appl. Phys. Lett.98, 231114 (2011).
[CrossRef]

Comput. Phys. Commun.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010).
[CrossRef]

Electron. Lett.

J. Liang, C. C. Chiau, X. Chen, and C. G. Parini, “Printed circular disc monopole antenna for ultra-wideband applications,” Electron. Lett.40(20), 1246–1247 (2004).
[CrossRef]

IEEE J. Quantum Electron.

D. A. B. Miller, J. S. Weiner, and D. Chemla, “Electric-field dependence of linear optical properties in quantum well structures: Waveguide electroabsorption and sum rules,” IEEE J. Quantum Electron.22(9), 1816–1830 (1986).
[CrossRef]

IEEE Trans. Microwave Antennas Propag.

R. A. Sadeghzadeh-Sheikhan, M. Naser-Moghadasi, E. Ebadifallah, H. Rousta, M. Katouli, and B. S. Virdee, “Planar monopole antenna employing back-plane ladder-shaped resonant structure for ultra-wideband performance,” IEEE Trans. Microwave Antennas Propag.4(9), 1327–1335 (2010).
[CrossRef]

J. Phys. A

R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” J. Phys. A3(3), 233–245 (1970).
[CrossRef]

Light Sci. Appl.

X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin, planar, Babinet-inverted plasmonic metalenses,” Light Sci. Appl.2(4), e72 (2013).
[CrossRef]

Metamaterials

G. Donzelli, A. Vallecchi, F. Capolino, and A. Schuchinsky, “Metamaterial made of paired planar conductors: Particle resonances, phenomena and properties,” Metamaterials3(1), 10–27 (2009).
[CrossRef]

Nat. Photonics

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics3(3), 148–151 (2009).
[CrossRef]

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007).
[CrossRef]

Nat. Phys.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys.2(2), 81–90 (2006).
[CrossRef]

Nature

K. J. Vahala, “Optical microcavities,” Nature424(6950), 839–846 (2003).
[CrossRef] [PubMed]

G. Günter, A. A. Anappara, J. Hees, A. Sell, G. Biasiol, L. Sorba, S. De Liberato, C. Ciuti, A. Tredicucci, A. Leitenstorfer, and R. Huber, “Sub-cycle switch-on of ultrastrong light-matter interaction,” Nature458(7235), 178–181 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Lett. A

R. Ruppin, “Electromagnetic energy density in a dispersive and absorptive material,” Phys. Lett. A299(2–3), 309–312 (2002).
[CrossRef]

Phys. Rev. B

K. J. Russell, K. Y. M. Yeung, and E. Hu, “Measuring the mode volume of plasmonic nanocavities using coupled optical emitters,” Phys. Rev. B85(24), 245445 (2012).
[CrossRef]

M. W. Klein, T. Tritschler, M. Wegener, and S. Linden, “Lineshape of harmonic generation by metallic nanoparticles and metallic photonic crystal slabs,” Phys. Rev. B72(11), 115113 (2005).
[CrossRef]

M. Porer, J.-M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, “Nonadiabatic switching of a photonic band structure: Ultrastrong light-matter coupling and slow-down of light,” Phys. Rev. B85(8), 081302 (2012).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71(3), 035424 (2005).
[CrossRef]

G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, “Variational calculations on a quantum well in an electric field,” Phys. Rev. B28(6), 3241–3245 (1983).
[CrossRef]

Phys. Rev. Lett.

K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, and N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett.105(22), 227403 (2010).
[CrossRef] [PubMed]

A. Delteil, A. Vasanelli, Y. Todorov, C. Feuillet Palma, M. Renaudat St-Jean, G. Beaudoin, I. Sagnes, and C. Sirtori, “Charge-induced coherence between intersubband plasmons in a quantum structure,” Phys. Rev. Lett.109(24), 246808 (2012).
[CrossRef] [PubMed]

M. Geiser, F. Castellano, G. Scalari, M. Beck, L. Nevou, and J. Faist, “Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells,” Phys. Rev. Lett.108(10), 106402 (2012).
[CrossRef] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett.105(19), 196402 (2010).
[CrossRef] [PubMed]

Proc. SPIE

D. W. Peters, C. M. Reinke, P. S. Davids, J. F. Klem, D. Leonhardt, J. R. Wendt, J. K. Kim, and S. Samora, “Nanoantenna-enabled midwave infrared focal plane arrays,” Proc. SPIE8353, 83533B (2012).
[CrossRef]

Science

D. G. Lidzey, D. D. C. Bradley, A. Armitage, S. Walker, and M. S. Skolnick, “Photon-mediated hybridization of Frenkel excitons in organic semiconductor microcavities,” Science288(5471), 1620–1623 (2000).
[CrossRef] [PubMed]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science335(6074), 1323–1326 (2012).
[CrossRef] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

J. Lin, J. P. B. Mueller, Q. Wang, G. Yuan, N. Antoniou, X.-C. Yuan, and F. Capasso, “Polarization-controlled tunable directional coupling of surface plasmon polaritons,” Science340(6130), 331–334 (2013).
[CrossRef] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science339(6125), 1232009 (2013).
[CrossRef] [PubMed]

Other

H. C. Liu and F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications I (Academic, 2000).

A. Gabbay, J. Reno, J. R. Wendt, A. Gin, M. C. Wanke, M. B. Sinclair, E. Shaner, and I. Brener, “Interaction between metamaterial resonators and intersubband transitions in semiconductor quantum wells,” Appl. Phys. Lett. 98, 203103–203101:203103 (2011).
[CrossRef]

J. D. Jackson, Classical electrodynamics (Wiley, New York, 1975).

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett. 98, 111110 111111–111113 (2011).

M. Born and E. Wolf, Principles of optics (University Press, Cambridge, UK, 2002).

Lumerical, retrieved http://www.lumerical.com .

K. B. Alici and E. Ozbay, “Electrically small split ring resonator antennas,” J. Appl. Phys. 101, 083104 083101–083104 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a single unit cell of the planar metamaterial. The “dogbone” resonator is processed directly above the thin optical dipole layer (indicated by the vertical arrows) resulting from the ISTs. The vertical confinement is provided by the conductive ground plane underneath.

Fig. 2
Fig. 2

Schematic of both sample geometries. The In.53Ga.47As/Al.48In.52As quantum-wells are designed for a transition energy of 100 meV (top left). Both samples are grown on an InP-substrate (blue); the quantum-well stack is indicated in purple. The monolithic metamaterial nanocavity sample (bottom right) is confined by an 800 nm thick n+ layer (red) in the vertical direction. The permittivity of the n+ layer is shown in the bottom left subplot where ε’ refers to the real part and ε” to the imaginary one. The difference in “dogbone” size between the conventional sample and the monolithic metamaterial nanocavity is required by the difference in permittivity of the QW-stack and the ground plane. We have adjusted the sizes to keep the metamaterial resonance frequency constant.

Fig. 3
Fig. 3

Field profiles and polariton branches simulated using finite-difference time-domain calculations. (a) Frequency and spatially resolved Ez profiles for both samples without quantum-well interaction. The electric field is concentrated at the air-semiconductor interface and penetrates 600 nm into the conventional sample (left panel). The n+ layer limits the cavity mode to the quantum-well region in case of the monolithic metamaterial nanocavity (right panel). The quantum-wells are sandwiched between a 30 nm (above, both samples) and a 40 nm (below, only metamaterial nanocavity) Al.48In.52As buffer layer which is indicated by the white, dashed lines. The absolute value of the Ez component is integrated across the entire unit cell in the xy-plane to create both profiles. The field values are referenced against the maximum for both cases. (b) Simulated reflectance curves for both types of samples using finite-difference time-domain calculations. As the QW-stack thickness is increased for the conventional sample the splitting between the two polariton branches increases as well. The eigenfrequencies appear as maxima in reflectance in this case. The metamaterial nanocavity sample experiences the same polariton splitting as the three-time thicker conventional sample appearing as minima in reflectance. The black dashed lines represent the predicted polariton eigenfrequencies using the coupled oscillator model.

Fig. 4
Fig. 4

Fabrication and experimental reflectance curves. (a) The “dogbone” metamaterial is defined by electron beam lithography directly on top of the semiconductor. A Ti/Au (5/100 nm) layer is evaporated followed by a standard lift-off process. The images are taken for our monolithic metamaterial nanocavity sample. The conventional sample follows the exact same processing recipe with slightly different resonator dimensions. (b) The conventional sample shows a peak in reflectivity on resonance with the metamaterial. The reflectance values are referenced against a gold mirror. The polariton branches predicted by the coupled oscillator model are shown by the dashed black lines. (c) The polariton anti-crossing shows up as minima in the reflectance curves. The reduced reflectance for polariton frequencies beyond 30 THz is caused by the reduced efficiency of the ground plane.

Metrics