Abstract

We propose and demonstrate a frequency multiplying optoelectronic oscillator with nonlinearly-coupled double loops based on two cascaded Mach–Zehnder modulators, to generate high frequency microwave signals using only low-frequency devices. We find the final oscillation modes are only determined by the length of the master oscillation loop. Frequency multiplying signals are generated via nonlinearly-coupled double loops, the output of one loop being used to modulate the other. In the experiments, microwave signals at 10 GHz with −121 dBc/Hz phase noise at 10 kHz offset and 20 GHz with −112.8 dBc/Hz phase noise at 10 kHz offset are generated. Meanwhile, their side-mode suppression ratios are also evaluated and the maximum ratio of 70 dB is obtained.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

Self-oscillating optical frequency comb generator based on an optoelectronic oscillator employing cascaded modulators

Jian Dai, Xingyuan Xu, Zhongle Wu, Yitang Dai, Feifei Yin, Yue Zhou, Jianqiang Li, and Kun Xu
Opt. Express 23(23) 30014-30019 (2015)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  2. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc. 13(8), 1725–1734 (1996).
    [Crossref]
  3. I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Pérot Etalon,” J. Lightwave Technol. 28(21), 3100–3106 (2010).
  4. S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
    [Crossref]
  5. L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
    [Crossref]
  6. Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol. 29(11), 1702–1707 (2011).
    [Crossref]
  7. L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
    [Crossref]
  8. P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
    [Crossref]
  9. D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
    [Crossref]
  10. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using push-pull Mach–Zehnder modulator biased at point for optical two-tone signal generation,” in Conf. Lasers Electro-Optics (CLEO2005). (Tokyo, Japan., 2005), pp. 877–879.
  11. S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
    [Crossref]
  12. W. Z. Li and J. P. Yao, “An optically tunable frequency-doubling optoelectronic oscillator incorporating a phase shifted fiber bragg grating based frequency-tunable photonic microwave filter,” Proc. MWP 2011, (Singapore, 2011) pp. 429–432.
    [Crossref]
  13. L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
    [Crossref]
  14. D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
    [Crossref]
  15. D. Zhu, S. L. Pan, and S. H. Cai, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012).
    [Crossref]
  16. M. Haji, L. P. Hou, A. E. Kelly, J. Akbar, J. H. Marsh, J. M. Arnold, and C. N. Ironside, “High frequency optoelectronic oscillators based on the optical feedback of semiconductor mode-locked laser diodes,” Opt. Express 20(3), 3268–3274 (2012).
    [Crossref] [PubMed]
  17. D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum(Tempa, Florida, U.S.A, 2003), pp. 405–410.
    [Crossref]
  18. R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
    [Crossref]
  19. Hewlett-Packard, “Phase noise characterization of microwave oscillators—frequency discriminator method,” product note 11729C–2 (Hewlett-Packard, Santa Clara, Calif.).

2013 (1)

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

2012 (3)

2011 (2)

Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol. 29(11), 1702–1707 (2011).
[Crossref]

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

2010 (4)

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[Crossref]

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

I. Ozdur, D. Mandridis, N. Hoghooghi, and P. J. Delfyett, “Low noise optically tunable opto-electronic oscillator with Fabry–Pérot Etalon,” J. Lightwave Technol. 28(21), 3100–3106 (2010).

2009 (1)

S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

2003 (1)

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

2002 (1)

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc. 13(8), 1725–1734 (1996).
[Crossref]

Akbar, J.

Arnold, J. M.

Ben, D.

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

Cai, S. H.

Chang, D.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Chembo, Y. K.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Chi, Y. C.

Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol. 29(11), 1702–1707 (2011).
[Crossref]

Colet, P.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Delfyett, P. J.

Devgan, P. S.

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

Dong, Y.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

Erlig, H.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Fetterman, H. R.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Gao, Y.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

Haji, M.

Hoghooghi, N.

Hou, L. P.

Huo, L.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

Ironside, C. N.

Journet, B.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Kelly, A. E.

Larger, L.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Li, W.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

Li, W. Z.

W. Z. Li and J. P. Yao, “An optically tunable frequency-doubling optoelectronic oscillator incorporating a phase shifted fiber bragg grating based frequency-tunable photonic microwave filter,” Proc. MWP 2011, (Singapore, 2011) pp. 429–432.
[Crossref]

Lin, G. R.

Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol. 29(11), 1702–1707 (2011).
[Crossref]

Liu, J. G.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

Liu, S. F.

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

Lou, C.

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

Maleki, L.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc. 13(8), 1725–1734 (1996).
[Crossref]

Mandridis, D.

Marsh, J. H.

Nakatani, K.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Nguimdo, R. M.

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

Nguyen, L. D.

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

Oh, A. C.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Ozdur, I.

Pan, S.

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

Pan, S. L.

D. Zhu, S. L. Pan, and S. H. Cai, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012).
[Crossref]

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[Crossref]

S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

Peng, P. C.

Y. C. Chi, P. C. Peng, and G. R. Lin, “Clock-free RZ-BPSK data generation using self-starting optoelectronic oscillator,” J. Lightwave Technol. 29(11), 1702–1707 (2011).
[Crossref]

Pruessner, M. W.

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

Steier, W. H.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Urick, V. J.

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

Wang, L. X.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

Williams, K. J.

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

Yao, J. P.

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[Crossref]

S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

W. Z. Li and J. P. Yao, “An optically tunable frequency-doubling optoelectronic oscillator incorporating a phase shifted fiber bragg grating based frequency-tunable photonic microwave filter,” Proc. MWP 2011, (Singapore, 2011) pp. 429–432.
[Crossref]

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc. 13(8), 1725–1734 (1996).
[Crossref]

Zhang, C.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Zhang, H.

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

Zhu, D.

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

D. Zhu, S. L. Pan, and S. H. Cai, “High-Performance Photonic Microwave Downconverter Based on a Frequency-Doubling Optoelectronic Oscillator,” J. Lightwave Technol. 30(18), 3036–3042 (2012).
[Crossref]

Zhu, N. H.

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

IEEE J. Opt. Soc. (1)

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” IEEE J. Opt. Soc. 13(8), 1725–1734 (1996).
[Crossref]

IEEE J. Quantum Electron. (2)

R. M. Nguimdo, Y. K. Chembo, P. Colet, and L. Larger, “On the phase noise performance of nonlinear double-loop optoelectronic microwave oscillators,” IEEE J. Quantum Electron. 48(11), 1415–1423 (2012).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

S. L. Pan and J. P. Yao, “Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator,” IEEE J. Sel. Top. Quantum Electron. 16(5), 1460–1468 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (7)

L. Huo, Y. Dong, C. Lou, and Y. Gao, “Clock extraction using an opto-electronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation,” IEEE Photon. Technol. Lett. 15(7), 981–983 (2003).
[Crossref]

L. D. Nguyen, K. Nakatani, and B. Journet, “Refractive index measurement by using an optoelectronic oscillator,” IEEE Photon. Technol. Lett. 22(12), 857–859 (2010).
[Crossref]

P. S. Devgan, M. W. Pruessner, V. J. Urick, and K. J. Williams, “Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter,” IEEE Photon. Technol. Lett. 22(3), 152–154 (2010).
[Crossref]

D. Chang, H. R. Fetterman, H. Erlig, H. Zhang, A. C. Oh, C. Zhang, and W. H. Steier, “39-GHz optoelectronic oscillator using broad-band polymer electrooptic modulator,” IEEE Photon. Technol. Lett. 14(2), 191–193 (2002).
[Crossref]

S. L. Pan and J. P. Yao, “A frequency-doubling optoelectronic oscillator using a polarization modulator,” IEEE Photon. Technol. Lett. 21(13), 929–931 (2009).
[Crossref]

L. X. Wang, N. H. Zhu, W. Li, and J. G. Liu, “A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach-Zehnder modulator and a chirped fiber bragg grating,” IEEE Photon. Technol. Lett. 23(22), 1688–1690 (2011).
[Crossref]

D. Zhu, S. F. Liu, D. Ben, and S. Pan, “Frequency-Quadrupling optoelectronic oscillator for multichannel upconversion,” IEEE Photon. Technol. Lett. 25(5), 426–429 (2013).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (4)

D. Eliyahu and L. Maleki, “Low phase noise and spurious level in multi-loop opto-electronic oscillators,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly with the 17th European Frequency and Time Forum(Tempa, Florida, U.S.A, 2003), pp. 405–410.
[Crossref]

W. Z. Li and J. P. Yao, “An optically tunable frequency-doubling optoelectronic oscillator incorporating a phase shifted fiber bragg grating based frequency-tunable photonic microwave filter,” Proc. MWP 2011, (Singapore, 2011) pp. 429–432.
[Crossref]

Hewlett-Packard, “Phase noise characterization of microwave oscillators—frequency discriminator method,” product note 11729C–2 (Hewlett-Packard, Santa Clara, Calif.).

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Optoelectronic oscillator using push-pull Mach–Zehnder modulator biased at point for optical two-tone signal generation,” in Conf. Lasers Electro-Optics (CLEO2005). (Tokyo, Japan., 2005), pp. 877–879.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The experimental setup of FM-OEO scheme. (MZM, Mach–Zehnder modulator; OC, optical coupler; EC, electrical coupler; PC, polarization controller; EDFA, Erbium doped fiber amplifier; OVDL, optical variable delay line; PD, photodetector; EA, electrical amplifier; EBPF, electrical bandpass filter; ESA, electrical spectrum analyzer).

Fig. 2
Fig. 2

Electrical spectrum of the FM-OEO. Span = 30MHz. (a) OVDL1with τ O V D L 1 =0ps ; (b) OVDL1 with τ O V D L 1 =10ps ; (c) OVDL2 with τ O V D L 2 =0ps ; (d) OVDL2 with τ O V D L 2 =10ps .

Fig. 3
Fig. 3

(a) Electrical spectrum of the FM-OEO. (b) Electrical spectrum of the conventional dual-loop OEO.

Fig. 4
Fig. 4

Electrical spectrum of fundamental-frequency and frequency-doubled microwave signals.

Fig. 5
Fig. 5

Phase noise spectrum of the (a) single-loop OEO measured at 10 GHz, (b) double-loop OEO measured at 10 GHz, (c) FM-OEO measured at 10 GHz and, (d) FM-OEO measured at 20 GHz.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

V 1 (t)= V b1 + V RF1 sin( ω m t )
E 1 ( t )= 1 2 E 0 exp( j ω 0 t )+ 1 2 E 0 exp( j ω 0 t )exp[ j π V π1 V 1 ( t ) ]
E 1 (t) E 0 2 { J 0 ( β 1 )exp(j ω 0 t)+ J 1 ( β 1 )exp[ j( ω 0 + ω m )t ]+ J 1 ( β 1 )exp[ j( ω 0 ω m )t ] }
V 2 ( t )={ R 2 G A2 2 E 0 2 J 0 ( β 1 ) J 1 ( β 1 )exp[ j( ω m t+ ω m τ 2 ) ]+ R 2 G A2 4 E 0 2 J 1 ( β 1 ) J 1 ( β 1 )exp[ j( 2 ω m t+2 ω m τ 2 ) ] }
  E 2 (t)= 1 4 E 1 ( t )+ 1 4 E 1 ( t )exp{ j π V π2 V b2 + j π 2 V π2 R 2 G A2 E 0 2 J 0 ( β 1 ) J 1 ( β 1 )exp[ j( ω m t+ ω m τ 2 ) ]+ j π 4 V π2 R 2 G A2 E 0 2 J 1 ( β 1 ) J 1 ( β 1 )exp[ j( 2 ω m t+2 ω m τ 2 ) ] }
E 3 ( t ) R 1 E 0 2 4 { [ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 0 ( β 3 ) ]exp(j ω m t) +[ J 0 ( β 1 ) J 1 ( β 2 )+ J 0 ( β 1 ) J 1 ( β 3 ) ]exp[ j ω m ( t+ τ 2 ) ] +[ J 1 ( β 1 ) J 1 ( β 2 )+ J 1 ( β 1 ) J 1 ( β 3 ) ]exp[ j2 ω m ( t+ τ 2 ) ] +[ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 1 ( β 2 ) ]exp[ j3 ω m ( t+ τ 2 ) ] +[ J 0 ( β 1 ) J 0 ( β 3 )+ J 0 ( β 1 ) J 1 ( β 3 ) ]exp[ j4 ω m ( t+ τ 2 ) ] }
E 3 ( t ) R 1 E 0 2 4 { [ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 0 ( β 3 ) ]exp(j ω m t) +[ J 0 ( β 1 ) J 1 ( β 2 )+ J 0 ( β 1 ) J 1 ( β 3 ) ]exp[ j ω m ( t+ τ 2 ) ] } = R 1 E 0 2 4 { [ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 0 ( β 3 ) ] +[ J 0 ( β 1 ) J 1 ( β 2 )+ J 0 ( β 1 ) J 1 ( β 3 ) ]exp( j ω m τ 2 ) }exp(j ω m t)
E 3 ( t )exp[ j ω m ( t+n τ 1 ) ] n=0 { G A1 R 1 E 0 2 4 [ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 0 ( β 3 ) + J 0 ( β 1 ) J 1 ( β 2 )exp( j ω m τ 2 ) + J 0 ( β 1 ) J 1 ( β 3 )exp( j ω m τ 2 ) ] } n =exp(j ω m t) n=0 [ G e ( ω m ) ] n exp( j ω m n τ 1 )
G e ( ω m )={ G A1 R 1 E 0 2 4 [ J 0 ( β 1 ) J 0 ( β 2 )+ J 0 ( β 1 ) J 0 ( β 3 )+ J 0 ( β 1 ) J 1 ( β 2 )exp( j ω m τ 2 )+ J 0 ( β 1 ) J 1 ( β 3 )exp( j ω m τ 2 ) ] }
E 3 ( t ) exp(j ω m t) 1 G e ( ω m )exp( j ω m τ 1 )
P( ω m ,t ) | E 3 ( t ) | 2 2R = 1 2R[ 1+ G e 2 ( ω m )2 G e ( ω m )cos( ω m τ 1 ) ]
ω m τ=2kπ, k=0,1,2,3,...,
ω m = 2kπ τ 1
Δω ω = Δf f = Δτ τ

Metrics