Abstract

A supercontinuum laser based double integrating sphere setup in combination with an unscattered transmittance measurement setup was developed and carefully validated for optical characterization of turbid samples in the 500-2250 nm wavelength range. A set of 57 liquid optical phantoms, covering a wide range of absorption and scattering properties, were prepared and measured at two sample thicknesses. The estimated bulk optical properties matched well for both thicknesses, and with theory and literature, without significant crosstalk between absorption and scattering. Equations were derived for the bulk scattering properties μs, μs’ and g of Intralipid® 20% which can be used to calculate the bulk scattering properties of intralipid-dilutions in the 500-2250 nm range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
    [CrossRef]
  2. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), p. 840.
  3. Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012).
    [CrossRef] [PubMed]
  4. W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008).
    [CrossRef] [PubMed]
  5. E. Zamora-Rojas, Department of Animal Production, University of Córdoba, Córdoba 14014, Spain, A. Garrido-Varo, B. Aernouts, D. Pérez-Marín, W. Saeys, Y. Yamada, and J. E. Guerrero-Ginel, are preparing a manuscript to be called “Characterization of diffuse reflectance near-infrared spectroscopy for non-invasive pig skin measurements.”
  6. P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
    [CrossRef] [PubMed]
  7. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
    [CrossRef]
  8. E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).
  9. S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .
  10. S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993).
    [CrossRef] [PubMed]
  11. S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express20(16), 17856–17872 (2012).
    [CrossRef] [PubMed]
  12. S. N. Thennadil, H. Martens, and A. Kohler, “Physics-based multiplicative scatter correction approaches for improving the performance of calibration models,” Appl. Spectrosc.60(3), 315–321 (2006).
    [CrossRef] [PubMed]
  13. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt.32(4), 367–371 (1993).
    [CrossRef] [PubMed]
  14. A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005).
    [CrossRef]
  15. G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
    [CrossRef]
  16. Labsphere, “Technical guid: integrating sphere theory and applications,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  17. L. Wang, S. Sharma, B. Aernouts, H. Ramon, and W. Saeys, “Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300-2350nm region with high,” Proc. SPIE 8427–3B, 1–6 (2012).
  18. J. Dudley and J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), p. 404.
  19. J. Pickering, C. Moes, H. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A9(4), 621–631 (1992).
    [CrossRef]
  20. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993).
    [CrossRef] [PubMed]
  21. Labsphere, “Technical guide: reference materials and coatings,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .
  22. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt.42(19), 4023–4030 (2003).
    [CrossRef] [PubMed]
  23. L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
    [CrossRef] [PubMed]
  24. H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
    [CrossRef] [PubMed]
  25. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  26. B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
    [CrossRef] [PubMed]
  27. P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
    [CrossRef] [PubMed]
  28. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
    [CrossRef] [PubMed]
  29. H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  30. X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
    [CrossRef] [PubMed]
  31. P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc.67(8), 993–996 (2013).
    [CrossRef] [PubMed]
  32. M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003).
    [CrossRef] [PubMed]
  33. G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  34. K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963).
    [CrossRef]
  35. A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003).
    [CrossRef] [PubMed]
  36. B. Aernouts, Department of Biosystems-MeBioS, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium, R. Van Beers, R. Watté, J. Lammertyn, and W. Saeys, are preparing a manuscript to be called “Dependent scattering in intralipid phantoms in the 600-1850 nm range.”
  37. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
    [CrossRef] [PubMed]
  38. T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
    [CrossRef]
  39. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
    [CrossRef] [PubMed]

2013

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc.67(8), 993–996 (2013).
[CrossRef] [PubMed]

2012

S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express20(16), 17856–17872 (2012).
[CrossRef] [PubMed]

Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012).
[CrossRef] [PubMed]

2011

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

P. Di Ninni, F. Martelli, and G. Zaccanti, “Effect of dependent scattering on the optical properties of Intralipid tissue phantoms,” Biomed. Opt. Express2(8), 2265–2278 (2011).
[CrossRef] [PubMed]

2010

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

2009

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

2008

2006

S. N. Thennadil, H. Martens, and A. Kohler, “Physics-based multiplicative scatter correction approaches for improving the performance of calibration models,” Appl. Spectrosc.60(3), 315–321 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

2005

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005).
[CrossRef]

2003

2001

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

1999

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
[CrossRef]

1994

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

1993

1992

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

J. Pickering, C. Moes, H. Sterenborg, S. A. Prahl, and M. J. C. van Gemert, “Two integrating spheres with an intervening scattering sample,” J. Opt. Soc. Am. A9(4), 621–631 (1992).
[CrossRef]

1991

1973

1963

K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963).
[CrossRef]

Aernouts, B.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

Bashkatov, A.

A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005).
[CrossRef]

Bashkatov, A. N.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Beek, J. F.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
[CrossRef]

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt.32(4), 367–371 (1993).
[CrossRef] [PubMed]

Bergmann, K.

K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963).
[CrossRef]

Biel, M. A.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003).
[CrossRef] [PubMed]

Blokland, P.

Borghese, F.

Bosman, S.

Cabassi, G.

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

Cattaneo, T.

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

Chen, Y.-C.

Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012).
[CrossRef] [PubMed]

Cletus, B.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

de Vries, G.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
[CrossRef]

Deconinck, G.

Del Bianco, S.

Denti, P.

Di Ninni, P.

Durinck, G.

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Foschum, F.

Garrido-Varo, A.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

Genina, E.

A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005).
[CrossRef]

Genina, E. A.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Giangiacomo, R.

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

Giusto, A.

Guerrero-Ginel, J. E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

Hale, G. M.

Hanselaer, P.

Hofkens, J.

Iatì, M. A.

Jacques, S. L.

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Keijzer, M.

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

Kienle, A.

Kochubey, V. I.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Kohler, A.

Künnemeyer, R.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc.67(8), 993–996 (2013).
[CrossRef] [PubMed]

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

Leyre, S.

Lucassen, G. W.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
[CrossRef]

Luo, Q.

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

Martelli, F.

Martens, H.

Martinsen, P.

P. I. Rowe, R. Künnemeyer, A. McGlone, S. Talele, P. Martinsen, and R. Oliver, “Thermal stability of intralipid optical phantoms,” Appl. Spectrosc.67(8), 993–996 (2013).
[CrossRef] [PubMed]

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

McGlone, A.

McGlone, V. A.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

Michels, R.

Moes, C.

Moes, C. J.

Nicolaï, B. M.

Ninni, P. D.

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

O’konski, C.

K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963).
[CrossRef]

Oliver, R.

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Pérez-Marín, D.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

Pickering, J.

Pickering, J. W.

Pogue, B. W.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

Posthumus, P.

Prahl, S. A.

Profaizer, M.

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

Querry, M. R.

Ramaekers, J. W.

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

Ramon, H.

Rowe, P. I.

Saeys, W.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

S. Leyre, G. Durinck, B. Van Giel, W. Saeys, J. Hofkens, G. Deconinck, and P. Hanselaer, “Extended adding-doubling method for fluorescent applications,” Opt. Express20(16), 17856–17872 (2012).
[CrossRef] [PubMed]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008).
[CrossRef] [PubMed]

Saija, R.

Sindoni, O. I.

Star, W. M.

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Sterenborg, H.

Sterenborg, H. J. C. M.

Talele, S.

Teichert, M. C.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003).
[CrossRef] [PubMed]

Thennadil, S. N.

Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012).
[CrossRef] [PubMed]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008).
[CrossRef] [PubMed]

S. N. Thennadil, H. Martens, and A. Kohler, “Physics-based multiplicative scatter correction approaches for improving the performance of calibration models,” Appl. Spectrosc.60(3), 315–321 (2006).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

Troy, T. L.

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

Tuchin, V. V.

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Usacheva, M. N.

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003).
[CrossRef] [PubMed]

van Gemert, M. J.

van Gemert, M. J. C.

Van Giel, B.

van Marie, J.

van Staveren, H. J.

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

van Wieringen, N.

Velazco-Roa, M. A.

Wang, L.

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

Welch, A. J.

Wen, X.

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Zaccanti, G.

Zamora-Rojas, E.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

Zhu, D.

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

Anal. Chim. Acta

Y.-C. Chen and S. N. Thennadil, “Insights into information contained in multiplicative scatter correction parameters and the potential for estimating particle size from these parameters,” Anal. Chim. Acta746, 37–46 (2012).
[CrossRef] [PubMed]

Appl. Opt.

G. M. Hale and M. R. Querry, “Optical Constants of Water in the 200-nm to 200-microm Wavelength Region,” Appl. Opt.12(3), 555–563 (1973).
[CrossRef] [PubMed]

H. J. van Staveren, C. J. Moes, J. van Marie, S. A. Prahl, and M. J. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, and M. J. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt.32(4), 367–371 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt.32(4), 399–410 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993).
[CrossRef] [PubMed]

G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt.42(19), 4023–4030 (2003).
[CrossRef] [PubMed]

A. Giusto, R. Saija, M. A. Iatì, P. Denti, F. Borghese, and O. I. Sindoni, “Optical properties of high-density dispersions of particles: application to intralipid solutions,” Appl. Opt.42(21), 4375–4380 (2003).
[CrossRef] [PubMed]

W. Saeys, M. A. Velazco-Roa, S. N. Thennadil, H. Ramon, and B. M. Nicolaï, “Optical properties of apple skin and flesh in the wavelength range from 350 to 2200 nm,” Appl. Opt.47(7), 908–919 (2008).
[CrossRef] [PubMed]

Appl. Spectrosc.

Biomed. Opt. Express

IEEE J. Sel. Top. Quantum Electron.

G. de Vries, J. F. Beek, G. W. Lucassen, and M. J. C. van Gemert, “The effect of light losses in double integrating spheres on optical properties estimation,” IEEE J. Sel. Top. Quantum Electron.5(4), 944–947 (1999).
[CrossRef]

Innov. Food Sci. Emerg. Technol.

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, D. Pérez-Marín, J. E. Guerrero-Ginel, and W. Saeys, “Double integrating sphere measurements for estimating optical properties of pig subcutaneous adipose tissue,” Innov. Food Sci. Emerg. Technol.19, 218–226 (2013).
[CrossRef]

E. Zamora-Rojas, B. Aernouts, A. Garrido-Varo, W. Saeys, D. Pérez-Marín, and J. E. Guerrero-Ginel, “Optical properties of pig skin epidermis and dermis estimated with double integrating spheres measurements,” Innov. Food Sci. Emerg. Technol., (to be published) (2013).

J. Biomed. Opt.

B. Cletus, R. Künnemeyer, P. Martinsen, and V. A. McGlone, “Temperature-dependent optical properties of Intralipid measured with frequency-domain photon-migration spectroscopy,” J. Biomed. Opt.15(1), 017003 (2010).
[CrossRef] [PubMed]

T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt.6(2), 167–176 (2001).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11(4), 041102 (2006).
[CrossRef] [PubMed]

J. Near Infrared Spectrosc.

T. Cattaneo, G. Cabassi, M. Profaizer, and R. Giangiacomo, “Contribution of light scattering to near infrared absorption in milk,” J. Near Infrared Spectrosc.17(1), 337 (2009).
[CrossRef]

J. Opt. Soc. Am. A

J. Photochem. Photobiol. B

M. N. Usacheva, M. C. Teichert, and M. A. Biel, “The role of the methylene blue and toluidine blue monomers and dimers in the photoinactivation of bacteria,” J. Photochem. Photobiol. B71(1-3), 87–98 (2003).
[CrossRef] [PubMed]

J. Phys. Chem.

K. Bergmann and C. O’konski, “A spectroscopic study of methylene blue monomer, dimer, and complexes with montmorillonite,” J. Phys. Chem.67(10), 2169–2177 (1963).
[CrossRef]

J. Phys. D Appl. Phys.

A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D Appl. Phys.38(15), 2543–2555 (2005).
[CrossRef]

Lasers Surg. Med.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992).
[CrossRef] [PubMed]

Opt. Express

Opt. Spectrosc.

A. Bashkatov and E. Genina, “Optical properties of the subcutaneous adipose tissue in the spectral range 400–2500 nm,” Opt. Spectrosc.99(5), 836–874 (2005).
[CrossRef]

Phys. Med. Biol.

X. Wen, V. V. Tuchin, Q. Luo, and D. Zhu, “Controling the scattering of intralipid by using optical clearing agents,” Phys. Med. Biol.54(22), 6917–6930 (2009).
[CrossRef] [PubMed]

P. D. Ninni, F. Martelli, and G. Zaccanti, “Intralipid: towards a diffusive reference standard for optical tissue phantoms,” Phys. Med. Biol.56(2), N21–N28 (2011).
[CrossRef] [PubMed]

L. Wang and S. L. Jacques, “Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission,” Phys. Med. Biol.39(12), 2349–2354 (1994).
[CrossRef] [PubMed]

H. J. van Staveren, J. F. Beek, J. W. Ramaekers, M. Keijzer, and W. M. Star, “Integrating sphere effect in whole bladder wall photodynamic therapy: I. 532 nm versus 630 nm optical irradiation,” Phys. Med. Biol.39(6), 947–959 (1994).
[CrossRef] [PubMed]

Other

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (SPIE Press, 2007), p. 840.

S. A. Prahl, “Everything I think you should know about Inverse Adding-Doubling,” http://omlc.ogi.edu/software/iad/iad-3-9-10.zip .

E. Zamora-Rojas, Department of Animal Production, University of Córdoba, Córdoba 14014, Spain, A. Garrido-Varo, B. Aernouts, D. Pérez-Marín, W. Saeys, Y. Yamada, and J. E. Guerrero-Ginel, are preparing a manuscript to be called “Characterization of diffuse reflectance near-infrared spectroscopy for non-invasive pig skin measurements.”

Labsphere, “Technical guid: integrating sphere theory and applications,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .

L. Wang, S. Sharma, B. Aernouts, H. Ramon, and W. Saeys, “Supercontinuum laser based double-integrating-sphere system for measuring optical properties of highly dense turbid media in the 1300-2350nm region with high,” Proc. SPIE 8427–3B, 1–6 (2012).

J. Dudley and J. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010), p. 404.

Labsphere, “Technical guide: reference materials and coatings,” http://www.labsphere.com/uploads/technical-guides/a-guide-to-reflectance-materials-and-coatings.pdf .

B. Aernouts, Department of Biosystems-MeBioS, KU Leuven, Kasteelpark Arenberg 30, 3001 Heverlee, Belgium, R. Van Beers, R. Watté, J. Lammertyn, and W. Saeys, are preparing a manuscript to be called “Dependent scattering in intralipid phantoms in the 600-1850 nm range.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic overview of the setup for double integrating sphere and unscattered transmittance measurements in the 500-2250 nm range. BS = Polka-dot beam splitter; D = detector; DAQ = data acquisition card; F = long-pass filter; FM = motorized flip mirror; FW = motorized filter wheel; L = convex lens; LT = light trap; S = sample.

Fig. 2
Fig. 2

Power spectrum of sample illumination in double integrating sphere measurements for maximum laser power (4W) and 1 mm slit size at the output of the monochromator, measured with a thermal (400-2500 nm) and InGaAs-photodiode (700-1800 nm) power sensor.

Fig. 3
Fig. 3

Set of 57 (8x7 + 1) liquid phantoms, created by mixing Intralipid® 20% (IL; scatterer), Methylene Blue (MB; absorber) and water (dilution agent). Rows from top to bottom have MB concentrations of respectively 0, 4, 8, 16, 32, 64, 128 and 136 µM. Columns from left to right have IL volume concentrations of respectively 1, 2, 4, 8, 16, 32, 64 and 100%.

Fig. 4
Fig. 4

Diffuse reflectance spectra (MR) for phantoms with minimum (A*) and maximum scattering level (G*) for a) 0.55 mm; and b) 1.1 mm sample thickness.

Fig. 5
Fig. 5

Total transmittance spectra (MT) for phantoms with minimum (A*) and maximum scattering level (G*) for a) 0.55 mm; and b) 1.1 mm sample thickness.

Fig. 6
Fig. 6

Unscattered transmittance spectra for phantoms with minimum (A*) and maximum scattering level (G*) for a) 0.55 mm; and b) 1.1 mm sample thickness.

Fig. 7
Fig. 7

Bulk absorption coefficient (µa) spectra in the 500-750 nm range as estimated for the liquid phantoms measured at a) 0.55 mm; and b) 1.1 mm sample thickness. Data is grouped per absorption level and the average (line) and standard deviation (error bars) within a group are plotted.

Fig. 8
Fig. 8

Bulk absorption coefficient (µa) spectra in the 750-2250 nm range as estimated for the liquid phantoms measured at a) 0.55 mm; and b) 1.1 mm sample thickness. Data is grouped per scattering level and the average (line) and standard deviation (error bars) within a group are plotted. The detail plot (1380-1580 nm) zooms in on the water absorption peak around 1450 nm to highlight the effect of water displacement with increasing Intralipid® 20% concentration.

Fig. 9
Fig. 9

Scatter plot of the bulk absorption coefficient (µa) values estimated at a) 665 nm and b) 1450 nm for 0.55 mm and 1.1 mm sample thickness against the corresponding a) Methylene Blue (MB; cMB) concentration and b) volume concentration of water (Φw). A linear regression line has been added to both plots.

Fig. 10
Fig. 10

Reduced scattering coefficient (µs) spectra in the 500-2250 nm range as estimated for the liquid phantoms measured at a) 0.55 mm; and b) 1.1 mm sample thickness. Data is grouped per scattering level and the average (line) and standard deviation (error bars) within a group is plotted.

Fig. 11
Fig. 11

Measured extinction coefficient (µt) for phantoms B1, C1, E1 and IL in the 500-2250 nm range for 0.55 mm and 1.1 mm sample thickness (see legend). In the gray-highlighted regions, µt is underestimated because of scattered photons being captured during the unscattered transmittance measurement.

Fig. 12
Fig. 12

Bulk scattering coefficient (µs) spectra in the 500-2250 nm range as estimated for the liquid phantoms measured at a) 0.55 mm; and b) 1.1 mm sample thickness. Data is grouped per scattering level and the average (line) and standard deviation (error bars) within a group is plotted.

Fig. 13
Fig. 13

Anisotropy factor spectra in the 500-2250 nm range as estimated for the liquid phantoms measured at a) 0.55 mm; and b) 1.1 mm sample thickness. Data is grouped per scattering level and the average (line) and standard deviation (error bars) within a group is plotted.

Fig. 14
Fig. 14

The bulk scattering properties for pure Intralipid® 20%, derived from phantoms A1, B1, C1, D1 and E1 for 0.55 mm and 1.1 mm sample thickness, not taking into account the effect of dependent scattering, plotted in function of the wavelength (λ) + fit: a) reduced scattering coefficient µs’; b) bulk scattering coefficient µs and c) anisotropy factor g. Comparison is made with results from literature (dashed, dash-dot and dotted lines).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g=a( 1f 1+ e c( λ+d ) +f )+b( 1h 1+ e c( λ+d ) +h )λ a=1.094;b=5.653* 10 4 ;c=5.3* 10 3 ; d= a( f1 ) b( h1 ) ;f=0.3516;h=0.1933

Metrics