Abstract

The strong enhancement of electrical fields in subnanometer gaps of self-assembled gold nanoparticle clusters holds great promise for large scale fabrication of sensitive optical sensing substrates. Due to the large number of involved nanoparticles, however, their optical response is complex and not easily accessible through numerical simulations. Here, we use hyperspectral supercontinuum spectroscopy to demonstrate how confined optical modes of well defined energies are supported by different areas of the cluster. Due to the strong resonant coupling in those regions, the cluster essentially acts as a nanoscale optical sieve which sorts incident light according to its wavelength.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
    [CrossRef] [PubMed]
  2. M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
    [CrossRef] [PubMed]
  3. J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
    [CrossRef] [PubMed]
  4. R.  Jin, “Nanoparticle clusters light up in SERS,” Angew. Chem. Int. Edit. 49, 2826–2829 (2010).
    [CrossRef]
  5. R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
    [CrossRef]
  6. S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
    [CrossRef] [PubMed]
  7. Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
    [CrossRef]
  8. A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
    [CrossRef]
  9. L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008).
    [CrossRef]
  10. M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
    [CrossRef] [PubMed]
  11. B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
    [CrossRef] [PubMed]
  12. F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
    [CrossRef] [PubMed]
  13. I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
    [CrossRef] [PubMed]
  14. T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
    [CrossRef]
  15. B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
    [CrossRef]
  16. M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986).
    [CrossRef]
  17. K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  18. V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [CrossRef] [PubMed]
  19. R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
    [CrossRef] [PubMed]
  20. L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
    [CrossRef] [PubMed]
  21. M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
    [CrossRef] [PubMed]
  22. Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
    [CrossRef]
  23. M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
    [CrossRef] [PubMed]
  24. P.  Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34, 15–28 (2011).
    [CrossRef]
  25. C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
    [CrossRef] [PubMed]
  26. H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
    [CrossRef]
  27. S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
    [CrossRef]
  28. K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
    [CrossRef] [PubMed]
  29. W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
    [CrossRef]
  30. T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
    [CrossRef]
  31. M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
    [CrossRef]
  32. A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
    [CrossRef] [PubMed]
  33. AuNPs were obtained from British Biocell International Ltd. Cucurbit[7]uril was kindly provided by Dr. O. A. Scherman, Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
  34. A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
    [CrossRef]
  35. S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
    [CrossRef]
  36. M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
    [CrossRef]
  37. N. Hüsken, Institut des Sciences Moléculaires UMR 5255, Université de Bordeaux 1, 16 Avenue Pey Berland, 33607 Pessac, France, and R. W. Taylor, J. C. Taveau, O. Lambert, O. A. Scherman, J. J. Baumberg, and A. Kuhn are preparing a manuscript to be called “Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled sub-nanometer junctions.”
  38. H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
    [CrossRef]
  39. G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
    [CrossRef] [PubMed]
  40. C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
    [CrossRef] [PubMed]
  41. E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
    [CrossRef]
  42. S. T.  McCain, R. M.  Willett, D. J.  Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008).
    [CrossRef] [PubMed]
  43. A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
    [CrossRef] [PubMed]
  44. K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
    [CrossRef] [PubMed]

2013 (5)

I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
[CrossRef] [PubMed]

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

2012 (7)

A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
[CrossRef]

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

2011 (5)

Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
[CrossRef]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
[CrossRef]

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

P.  Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34, 15–28 (2011).
[CrossRef]

2010 (5)

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

R.  Jin, “Nanoparticle clusters light up in SERS,” Angew. Chem. Int. Edit. 49, 2826–2829 (2010).
[CrossRef]

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

2009 (4)

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

2008 (4)

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008).
[CrossRef]

S. T.  McCain, R. M.  Willett, D. J.  Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008).
[CrossRef] [PubMed]

2007 (1)

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

2006 (1)

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

2005 (2)

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

2004 (2)

M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef] [PubMed]

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

2003 (1)

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2002 (1)

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

2001 (2)

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

1986 (1)

M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986).
[CrossRef]

1953 (1)

E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Aizpurua, J.

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Alexander, K. D.

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Alexandridis, P.

P.  Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34, 15–28 (2011).
[CrossRef]

Arrighini, G. P.

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

Astruc, D.

M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef] [PubMed]

Bao, J.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Bao, K.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Barauskas, J.

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

Bardhan, R.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Baumberg, J. J.

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Biedermann, F.

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

Blakey, I.

I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
[CrossRef] [PubMed]

Bogomolni, R.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Boriskina, S. V.

B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
[CrossRef]

Bosman, M.

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Bourillot, E.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

Brady, D. J.

Braun, G.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Brust, M.

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

Bruzzone, S.

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

Capasso, F.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Chang, W. S.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Chen, W.

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

Chester, M. H.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Chicanne, C.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Chilkoti, A.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Ciracì, C.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Colas des Francs, G.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Cooper, A. I.

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

Corni, S.

Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
[CrossRef]

Coronado, E.

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Cortie, M. B.

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Dal Negro, L.

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

Daniel, M. C.

M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef] [PubMed]

David, T.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Dereux, A.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Domingo, C.

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

Dujardin, E.

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Esteban, R.

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Fan, J. A.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Funston, A. M.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Furst, E. M.

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

García De Abajo, F. J.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

García-Ramos, J. V.

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

Giessen, H.

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

Girard, C.

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Grant, C. D.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Grzelczak, M.

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

Guidotti, C.

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

Halas, N. J.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Hentschel, M.

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

Hill, R. T.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Hossain, M. K.

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

Huang, F. M.

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Huser, T.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Huser, T. R.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Hussain, I.

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

Imura, K.

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

Jin, R.

R.  Jin, “Nanoparticle clusters light up in SERS,” Angew. Chem. Int. Edit. 49, 2826–2829 (2010).
[CrossRef]

Jose-Yacaman, M.

A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
[CrossRef]

Kasera, S.

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

Keast, V. J.

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Kelly, K.

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Khan, I.

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Kim, B.

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

Kimel, A.

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

Kirilyuk, A.

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

Kitajima, M.

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

Koh, A. L.

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Kothleitner, G.

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Kreibig, U.

M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986).
[CrossRef]

Krishnamoorthy, S.

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

Krishnan, S.

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

Lacroute, Y.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

Laurence, T. A.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Lee, T.-C.

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Li, M.

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Lin, S.

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Linfoot, E. H.

E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Link, S.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Lopez, R.

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Maaroof, A. I.

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Magen, C.

A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
[CrossRef]

Mahajan, S.

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Maier, S. A.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Malvaldi, M.

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

Mann, S.

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Manoharan, V. N.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Mayoral, A.

A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
[CrossRef]

McCain, S. T.

Mccomb, D. W.

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Mennucci, B.

Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
[CrossRef]

Merican, Z.

I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
[CrossRef] [PubMed]

Metzger, B.

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

Mock, J. J.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Moskovits, M.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Mulvaney, P.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Nordlander, P.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Novo, C.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Odgen, N.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Okamoto, H.

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Pérez-Juste, J.

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

Peyrade, D.

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Polavarapu, L.

L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008).
[CrossRef]

Premasiri, W. R.

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

Quidant, R.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

Quinten, M.

M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986).
[CrossRef]

Rasing, T.

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

Reich, N.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Reinhard, B. M.

B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
[CrossRef]

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

Rodríguez-Fernández, J.

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

Roldán, M. L.

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

Sadtler, B.

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

Sanchez-Cortes, S.

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

Sánchez-González, Á.

Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
[CrossRef]

Schäferling, M.

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

Schatz, G. C.

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Scherman, O. A.

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Schwartzberg, A.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Schwartzberg, A. M.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Shimada, T.

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

Shvets, G.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Skinner, K.

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Slaughter, L. S.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Smith, D. R.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Smith, W. E.

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Talley, C.

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

Talley, C. E.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Taylor, R. W.

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

Thoniyot, P.

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

Thubagere, A.

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

Thurecht, K. J.

I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
[CrossRef] [PubMed]

Tripp, S. L.

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

Urzhumov, Y.

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

Vermant, J.

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

Watanabe, M.

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Weeber, J.

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

Wei, A.

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

Wei, H.

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Willett, R. M.

Willingham, B. A.

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

Wolcott, A.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Wolf, E.

E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Wu, C.

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Xu, L.

Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

Xu, Q. H.

L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008).
[CrossRef]

Yan, B.

B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
[CrossRef]

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

Yap, F. L.

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

Zhang, J. Z.

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

Zhang, S.

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Zhao, L. L.

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhao, Y.

Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

Ziegler, L. D.

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

ACS Nano (5)

M.  Grzelczak, J.  Vermant, E. M.  Furst, L. M.  Liz-Marzán, “Directed self-assembly of nanoparticles,” ACS Nano 4, 3591–3605 (2010).
[CrossRef] [PubMed]

R. W.  Taylor, T.-C.  Lee, O. A.  Scherman, R.  Esteban, J.  Aizpurua, F. M.  Huang, J. J.  Baumberg, S.  Mahajan, “Precise subnanometer plasmonic junctions for SERS within gold nanoparticle assemblies using cucurbit[n]uril “glue”,” ACS Nano 5, 3878–3887 (2011).
[CrossRef]

B.  Yan, A.  Thubagere, W. R.  Premasiri, L. D.  Ziegler, L.  Dal Negro, B. M.  Reinhard, “Engineered SERS substrates with multiscale signal enhancement: nanoparticle cluster arrays,” ACS Nano 3, 1190–1202 (2009).
[CrossRef] [PubMed]

F. L.  Yap, P.  Thoniyot, S.  Krishnan, S.  Krishnamoorthy, “Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers,” ACS Nano 6, 2056–2070 (2012).
[CrossRef] [PubMed]

A. L.  Koh, K.  Bao, I.  Khan, W. E.  Smith, G.  Kothleitner, P.  Nordlander, S. A.  Maier, D. W.  Mccomb, “Electron energy-loss spectroscopy (EELS) of silver nanoparticles and dimers : Influence of beam damage and mapping of dark modes,” ACS Nano 3, 3015–3022 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

S.  Lin, M.  Li, E.  Dujardin, C.  Girard, S.  Mann, “One-dimensional plasmon coupling by facile self-assembly of gold nanoparticles into branched chain networks,” Adv. Mater. 17, 2553–2559 (2005).
[CrossRef]

Angew. Chem. Int. Edit. (1)

R.  Jin, “Nanoparticle clusters light up in SERS,” Angew. Chem. Int. Edit. 49, 2826–2829 (2010).
[CrossRef]

Chem. Commun. (1)

A.  Mayoral, C.  Magen, M.  Jose-Yacaman, “Nanoscale mapping of plasmon resonances of functional multi-branched gold nanoparticles,” Chem. Commun. 48, 8667–8669 (2012).
[CrossRef]

Chem. Eng. Technol. (1)

P.  Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chem. Eng. Technol. 34, 15–28 (2011).
[CrossRef]

Chem. Rev. (1)

M. C.  Daniel, D.  Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chem. Rev. 104, 293–346 (2004).
[CrossRef] [PubMed]

Chem. Soc. Rev. (2)

V.  Myroshnychenko, J.  Rodríguez-Fernández, I.  Pastoriza-Santos, A. M.  Funston, C.  Novo, P.  Mulvaney, L. M.  Liz-Marzán, F. J.  García De Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef] [PubMed]

M.  Grzelczak, J.  Pérez-Juste, P.  Mulvaney, L. M.  Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chem. Soc. Rev. 37, 1783–1791 (2008).
[CrossRef] [PubMed]

ChemPhysChem (1)

A.  Wei, B.  Kim, B.  Sadtler, S. L.  Tripp, “Tunable surface-enhanced Raman scattering from large gold nanoparticle arrays,” ChemPhysChem 2, 743–745 (2001).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

T. A.  Laurence, G.  Braun, C.  Talley, A.  Schwartzberg, M.  Moskovits, N.  Reich, T.  Huser, “Rapid, solution-based characterization of optimized SERS nanoparticle substrates,” J. Am. Chem. Soc. 131, 162–169 (2009).
[CrossRef]

J. Photochem. Photobiol. A Chem. (1)

H.  Okamoto, K.  Imura, T.  Shimada, M.  Kitajima, “Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling,” J. Photochem. Photobiol. A Chem. 221, 154–159 (2011).
[CrossRef]

J. Phys. Chem. B (1)

K.  Kelly, E.  Coronado, L. L.  Zhao, G. C.  Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. Lett. (1)

Y.  Zhao, L.  Xu, L. M.  Liz-Marzán, “Alternating plasmonic nanoparticle heterochains made by polymerase chain reaction and their optical properties,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

J. Phys. Chem. B (1)

A. M.  Schwartzberg, C. D.  Grant, A.  Wolcott, C. E.  Talley, T. R.  Huser, R.  Bogomolni, J. Z.  Zhang, “Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate,” J. Phys. Chem. B 108, 19191–19197 (2004).
[CrossRef]

J. Phys. Chem. C (1)

Á.  Sánchez-González, S.  Corni, B.  Mennucci, “Surface-enhanced fluorescence within a metal nanoparticle array: The role of solvent and plasmon couplings,” J. Phys. Chem. C 115, 5450–5460 (2011).
[CrossRef]

J. Phys. Chem. B (1)

S.  Bruzzone, M.  Malvaldi, G. P.  Arrighini, C.  Guidotti, “Theoretical study of electromagnetic scattering by metal nanoparticles,” J. Phys. Chem. B 109, 3807–3812 (2005).
[CrossRef]

J. Phys. Chem. C. (1)

B.  Yan, S. V.  Boriskina, B. M.  Reinhard, “Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications,” J. Phys. Chem. C. 115, 4578–4583 (2011).
[CrossRef]

J. Phys. Chem. Lett. (1)

H.  Okamoto, K.  Imura, “Visualizing the optical field structures in metal nanostructures,” J. Phys. Chem. Lett. 4, 2230–2241 (2013).
[CrossRef]

Langmuir (4)

I.  Blakey, Z.  Merican, K. J.  Thurecht, “A method for controlling the aggregation of gold nanoparticles: tuning of optical and spectroscopic properties,” Langmuir 29, 8266–8274 (2013).
[CrossRef] [PubMed]

R.  Esteban, R. W.  Taylor, J. J.  Baumberg, J.  Aizpurua, “How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles,” Langmuir 28, 8881–8890 (2012).
[CrossRef] [PubMed]

L.  Polavarapu, Q. H.  Xu, “Water-soluble conjugated polymer-induced self-assembly of gold nanoparticles and its application to SERS,” Langmuir 24, 10608–10611 (2008).
[CrossRef]

I.  Hussain, M.  Brust, J.  Barauskas, A. I.  Cooper, “Controlled step growth of molecularly linked gold nanoparticles: from metallic monomers to dimers to polymeric nanoparticle chains,” Langmuir 25, 1934–1939 (2009).
[CrossRef] [PubMed]

Nano Lett. (1)

S.  Kasera, F.  Biedermann, J. J.  Baumberg, O. A.  Scherman, S.  Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12, 5924–5928 (2012).
[CrossRef] [PubMed]

Nano Lett. (4)

L. S.  Slaughter, B. A.  Willingham, W. S.  Chang, M. H.  Chester, N.  Odgen, S.  Link, “Toward plasmonic polymers,” Nano Lett. 12, 3967–3972 (2012).
[CrossRef] [PubMed]

M.  Hentschel, M.  Schäferling, B.  Metzger, H.  Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13, 600–606 (2013).
[CrossRef] [PubMed]

K.  Imura, H.  Okamoto, M. K.  Hossain, M.  Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6, 2173–2176 (2006).
[CrossRef] [PubMed]

K. D.  Alexander, K.  Skinner, S.  Zhang, H.  Wei, R.  Lopez, “Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate.” Nano Lett. 10, 4488–4493 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

M.  Bosman, V. J.  Keast, M.  Watanabe, A. I.  Maaroof, M. B.  Cortie, “Mapping surface plasmons at the nanometre scale with an electron beam,” Nanotechnology 18, 165505 (2007).
[CrossRef]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

M. L.  Roldán, S.  Sanchez-Cortes, J. V.  García-Ramos, C.  Domingo, “Cucurbit[8]uril-stabilized charge transfer complexes with diquat driven by pH: a SERS study,” Phys. Chem. Chem. Phys. 14, 4935–4941 (2012).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

T.  Shimada, K.  Imura, H.  Okamoto, M.  Kitajima, “Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy,” Phys. Chem. Chem. Phys. 15, 4265–4269 (2013).
[CrossRef]

Phys. Rev. Lett. (2)

G.  Colas des Francs, C.  Girard, J.  Weeber, C.  Chicanne, T.  David, A.  Dereux, D.  Peyrade, “Optical analogy to electronic quantum corrals,” Phys. Rev. Lett. 86, 4950–4953 (2001).
[CrossRef] [PubMed]

C.  Chicanne, T.  David, R.  Quidant, J.  Weeber, Y.  Lacroute, E.  Bourillot, A.  Dereux, G.  Colas des Francs, C.  Girard, “Imaging the local density of states of optical corrals,” Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi B (1)

W.  Chen, A.  Kimel, A.  Kirilyuk, T.  Rasing, “Apertureless SNOM study on gold nanoparticles: Experiments and simulations,” Phys. Status Solidi B 247, 2047–2050 (2010).
[CrossRef]

Proc. Phys. Soc. B (1)

E. H.  Linfoot, E.  Wolf, “Diffraction images in systems with an annular aperture,” Proc. Phys. Soc. B 66, 145–149 (1953).
[CrossRef]

Science (2)

C.  Ciracì, R. T.  Hill, J. J.  Mock, Y.  Urzhumov, A. I.  Fernández-Domínguez, S. A.  Maier, J. B.  Pendry, A.  Chilkoti, D. R.  Smith, “Probing the ultimate limits of plasmonic enhancement,” Science 337, 1072–1074 (2012).
[CrossRef] [PubMed]

J. A.  Fan, C.  Wu, K.  Bao, J.  Bao, R.  Bardhan, N. J.  Halas, V. N.  Manoharan, P.  Nordlander, G.  Shvets, F.  Capasso, “Self-assembled plasmonic nanoparticle clusters,” Science 328, 1135–1338 (2010).
[CrossRef] [PubMed]

Surf. Sci. (1)

M.  Quinten, U.  Kreibig, “Optical properties of aggregates of small metal particles,” Surf. Sci. 172, 557–577 (1986).
[CrossRef]

Other (2)

N. Hüsken, Institut des Sciences Moléculaires UMR 5255, Université de Bordeaux 1, 16 Avenue Pey Berland, 33607 Pessac, France, and R. W. Taylor, J. C. Taveau, O. Lambert, O. A. Scherman, J. J. Baumberg, and A. Kuhn are preparing a manuscript to be called “Electrokinetic assembly of one-dimensional nanoparticle chains with cucurbit[7]uril controlled sub-nanometer junctions.”

AuNPs were obtained from British Biocell International Ltd. Cucurbit[7]uril was kindly provided by Dr. O. A. Scherman, Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Schematic of gold nanoparticle self-assembly into clusters using the macrocyclic molecule cucurbit[7]uril (CB) as rigid linker. b) Extinction spectra of the first four minutes of the aggregation process. c) Electron microscopy images of the clusters at different magnifications show the cluster and particle morphologies and the uniformity of interparticle separations. d) Supercontinuum laser dark-field spectroscopic setup for rapid collection of full scattering spectra from a diffraction limited spot during sample scanning.

Fig. 2
Fig. 2

Scattering response of a self-assembled gold nanoparticle cluster. a) Scanning electron microscope (SEM) image of the cluster together with optical bright- (BF) and dark-field (DF) images (left). The spatial distribution of the scattering response of the cluster at different wavelengths (right). (Note: Each image shows the same field of view and the light is unpolarized, wavelengths are labeled at the bottom of each image, the gray dotted lines represent the outline of the cluster as extracted from the SEM image). b) Radially averaged and normalized power spectral density of hyperspectral intensity maps (top) and of measured PSF (bottom).

Fig. 3
Fig. 3

a) False color image showing the wavelength of the dominant mode at each spatial position (top) together with the corresponding SEM images of the cluster (bottom). b) Schematic of a small cluster illustrating the excitation of various chain plasmons with differing resonant wavelengths (blue = short, red = long) for vertically and horizontally polarized light.

Fig. 4
Fig. 4

a) Logarithmic intensity map of the total scattering response of the cluster in Fig. 2 between 500 and 1000 nm. The primary scattering from the cluster is false-colored in blue, the surrounding ’ghost’ modes in red. b) (Top) Spatial resolution of setup: Wavelength dependence of FWHM of measured point spread function (PSF). (Bottom) Measured PSF. c) Investigation of the scattering from the edge of a gold rectangle on a silicon substrate (i). Convolution of the PSF of the system (at 800 nm) with a sub-diffraction line (ii) produces the theoretically predicted scattering map (iii). This is in reasonable agreement with the measured scattering map, but does not reproduce the hot-spots in the edges (iv).

Metrics