Abstract

Measuring conductive thin film properties during production and in end products is a challenge. The main demands for the measurements are: production control, reliability and functionality in final applications. There are several ways to measure thin film quality in a laboratory environment, however these methods are poorly applicable for production facilities. In order to bypass the limitations of existing methods, a simple synchronized heating and IR-imaging based system was implemented. To demonstrate the proposed method, Indium Tin Oxide (ITO) was selected as an example of conductive thin films. PET-ITO films were bent to obtain samples with defects. The proposed method was used and automated signal processing was developed. The results show that the system developed here is suitable for defining breakage types and localizing defects.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull.25(08), 52–57 (2000).
    [CrossRef]
  2. J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
    [CrossRef]
  3. L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
    [CrossRef] [PubMed]
  4. C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
    [CrossRef]
  5. N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
    [CrossRef]
  6. J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
    [CrossRef]
  7. K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
    [CrossRef]
  8. Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
    [CrossRef]
  9. K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
    [CrossRef]
  10. J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
    [CrossRef]
  11. M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
    [CrossRef]
  12. J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
    [CrossRef]
  13. O. Ourida and B. M. Said, “Influence of the blend concentration of P3HT: PCBM in the performances of BHJ solar cells,” SATRESET1, 90–92 (2011).
  14. J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).
  15. A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
    [CrossRef]
  16. O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
    [CrossRef]
  17. H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
    [CrossRef]
  18. K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
    [CrossRef]

2013 (1)

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

2012 (2)

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
[CrossRef]

J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
[CrossRef]

2011 (7)

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

O. Ourida and B. M. Said, “Influence of the blend concentration of P3HT: PCBM in the performances of BHJ solar cells,” SATRESET1, 90–92 (2011).

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

2010 (2)

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

2009 (1)

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

2008 (1)

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

2007 (1)

J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
[CrossRef]

2004 (1)

A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
[CrossRef]

2002 (1)

J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).

2000 (1)

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull.25(08), 52–57 (2000).
[CrossRef]

Aberle, A. G.

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

Alzoubi, K.

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

Appasamy, S.

J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
[CrossRef]

Augustine, B.

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

Ba, D. C.

J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
[CrossRef]

Banerjee, D. A.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Bauer, J.

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

Breitenstein, O.

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).

Brendel, R.

A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
[CrossRef]

Cairns, D. R.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Chae, J.

J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
[CrossRef]

Desu, S. B.

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

Emmott, C. J. M.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
[CrossRef]

Espinosa, N.

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

Fabritius, T.

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

García-Valverde, R.

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

Gordon, R. G.

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull.25(08), 52–57 (2000).
[CrossRef]

Hamasha, M. M.

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

Hecht, D. S.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Hu, L.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Irvin, G. C.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Jain, K.

J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
[CrossRef]

Janssens, J.

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

Kim, D. G.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Kim, E.-H.

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Kim, G.

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Kim, Y. D.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Krebs, F. C.

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

Kunz, O.

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

Langenkamp, M.

J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).

Lee, D. Y.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Lee, G. H.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Lee, G.-H.

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Lee, J. R.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Lee, R. S.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Lee, S.-H.

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Leng, J.

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Leppänen, K.

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

Li, J. C.

J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
[CrossRef]

Lin, Z.-

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Lu, S.

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

Morris, N. J.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Myllylä, R.

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

Nelson, J.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
[CrossRef]

Ourida, O.

O. Ourida and B. M. Said, “Influence of the blend concentration of P3HT: PCBM in the performances of BHJ solar cells,” SATRESET1, 90–92 (2011).

Park, J.-W.

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Pohl, P.

A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
[CrossRef]

Price, S. C.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

Rakotoniana, J. P.

J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).

Saarela, J.

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

Said, B. M.

O. Ourida and B. M. Said, “Influence of the blend concentration of P3HT: PCBM in the performances of BHJ solar cells,” SATRESET1, 90–92 (2011).

Sammakia, B.

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

Schneider, J.

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

Sierros, K. A.

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Song, P. K.

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

Straube, H.

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

Urbina, A.

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
[CrossRef]

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

Wagner, J.-M.

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

Wang, Y.

J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
[CrossRef]

Wiley, B. J.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

Wolf, A.

A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
[CrossRef]

Wong, J.

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

Xia, F.

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Xue, W.

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Yang, L.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

You, W.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

Yu, Z.-

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Zhang, D.-

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Zhang, T.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

Zhao, J.-

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

Zhou, H.

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, and W. You, “Solution-processed flexible polymer solar cells with silver nanowire electrodes,” ACS Appl. Mater. Interfaces3(10), 4075–4084 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Chae, S. Appasamy, and K. Jain, “Patterning of indium tin oxide by projection photoablation and lift-off process for fabrication of flat-panel displays,” Appl. Phys. Lett.90(26), 261102 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

Z.- Yu, J.- Zhao, F. Xia, Z.- Lin, D.- Zhang, J. Leng, and W. Xue, “Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO2 buffer layer-coated polymer substrates by magnetron sputtering,” Appl. Surf. Sci.257(11), 4807–4810 (2011).
[CrossRef]

J. Appl. Phys. (2)

A. Wolf, P. Pohl, and R. Brendel, “Thermophysical analysis of thin films by lock-in thermography,” J. Appl. Phys.96(11), 6306–6312 (2004).
[CrossRef]

H. Straube, J.-M. Wagner, J. Schneider, and O. Breitenstein, “Quantitative evaluation of loss mechanisms in thin film solar cells using lock-in thermography,” J. Appl. Phys.110(8), 084513 (2011).
[CrossRef]

J. Disp. Technol. (1)

K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, “Bending fatigue study of sputtered ITO on flexible substrate,” J. Disp. Technol.7(11), 593–600 (2011).
[CrossRef]

Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B (1)

J. P. Rakotoniana, O. Breitenstein, and M. Langenkamp, “Localization of weak heat sources in electronic devices using highly sensitive lock-in thermography,” Mater. Sci. Eng. B Adv. Funct. Solid State Mater. B91–92, 481–485 (2002).

Met. Mater. Int. (1)

J. R. Lee, D. Y. Lee, D. G. Kim, G. H. Lee, Y. D. Kim, and P. K. Song, “Characteristics of ITO films deposited on a PET substrate under various deposition conditions,” Met. Mater. Int.14(6), 745–751 (2008).
[CrossRef]

MRS Bull. (1)

R. G. Gordon, “Criteria for choosing transparent conductors,” MRS Bull.25(08), 52–57 (2000).
[CrossRef]

Phys. Procedia (1)

J. C. Li, Y. Wang, and D. C. Ba, “Characterization of semiconductor surface conductivity by using microscopic four-point technique,” Phys. Procedia32, 347–355 (2012).
[CrossRef]

Prog. Photovolt. Res. Appl. (1)

O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, and A. G. Aberle, “Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass,” Prog. Photovolt. Res. Appl.17(1), 35–46 (2009).
[CrossRef]

SATRESET (1)

O. Ourida and B. M. Said, “Influence of the blend concentration of P3HT: PCBM in the performances of BHJ solar cells,” SATRESET1, 90–92 (2011).

Sol. Energy Mater. Sol. Cells (3)

K. Leppänen, B. Augustine, J. Saarela, R. Myllylä, and T. Fabritius, “Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells117, 512–518 (2013).
[CrossRef]

C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012).
[CrossRef]

N. Espinosa, R. García-Valverde, A. Urbina, and F. C. Krebs, “A life cycle analysis of polymer solar cell modules prepared using roll-to-roll methods under ambient conditions,” Sol. Energy Mater. Sol. Cells95(5), 1293–1302 (2011).
[CrossRef]

Surf. Coat. Technol. (1)

J.-W. Park, G. Kim, S.-H. Lee, E.-H. Kim, and G.-H. Lee, “The effect of film microstructures on cracking of transparent conductive oxide (TCO) coatings on polymer substrates,” Surf. Coat. Technol.205(3), 915–921 (2010).
[CrossRef]

Thin Solid Films (2)

M. M. Hamasha, K. Alzoubi, S. Lu, and S. B. Desu, “Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate,” Thin Solid Films519(18), 6033–6038 (2011).
[CrossRef]

K. A. Sierros, D. S. Hecht, D. A. Banerjee, N. J. Morris, L. Hu, G. C. Irvin, R. S. Lee, and D. R. Cairns, “Durable transparent carbon nanotube films for flexible device components,” Thin Solid Films518(23), 6977–6983 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Measurement setup of the synchronized thermography (ST). Triggering starts heating the sample with electricity and after five seconds IR camera was triggered to take a picture the sample. In addition to ST, current and voltage were measured, marked in the figure with symbols A and V.

Fig. 2
Fig. 2

From original IR-image to ROI. Blue is the coolest and orange is the warmest area. All samples were extracted to the size of Tn(x,y) to exclude temperature diffusion (in the case of the cracked samples, it was extracted on the side where the temperature was highest and the part where diffusion occurred was cut out).

Fig. 3
Fig. 3

Figures a and b show images measured by optical profilometer a) Not cracked sample (reference sample) b) Cracked sample (bent with 15 mm cylinder, arrows point to cracks). The dimensions of a) and b) were 158 µm (y-axis) × 119 µm (x-axis). c) Med(ΔT) of cracked and not cracked (Not cr.) samples, which were measured by ST. Samples are all the samples mentioned in section 2.1.

Fig. 4
Fig. 4

Flow chart ending on major and minor breakages.

Fig. 5
Fig. 5

Data processing for minor breakage characterization

Fig. 6
Fig. 6

Data processing for major breakage characterization

Fig. 7
Fig. 7

Data processing to mark the breakages in the sample map.

Fig. 8
Fig. 8

Flow chart of automatic evaluating and breakage area localization method

Fig. 9
Fig. 9

Different temperature and data figures of representative sample, which was bent with 25 mm and evaluated: a) Temperature increase of the sample; b) Sample map after horizontal medians were subtracted from every pixel; c) Derivative of the previous figure on the direction of sample width, d) Previous figure is smoothened using 3 × 3 median; e) Every data-pixel with absolute value over 0.2 °C after smoothing is shown as broken area; f) Temperature increase of the sample is shown together with broken areas. Red edges are surrounding the broken areas.

Fig. 10
Fig. 10

Different types of breakages; a) Reference; b-d) samples with minor breakages; e, f) major breakage, cracked samples. Red lines border the breakage areas.

Fig. 11
Fig. 11

a) The broken area of different samples (mm2) is shown as function of ΔT (°C). Samples bent with 15 mm diameter: □; Samples bent with 20 mm diameter: ○; Samples bent with 25 mm diameter:▲; Samples bent with 30 mm diameter: + ; Samples bent with 53 mm diameter: × . Samples belonging to three distinguished groups on ΔT and broken area matrix are circled. The variations of ΔT for each bending cylinder are caused by differences in the structure of the ITO-layer, randomness in the breaking event and the measurement procedure used. b) ΔT (°C) of samples with major breakage is presented as a function of conductance (mS). ΔT is the average temperature increase of the broken segments. Samples bent with 15 mm diameter: □; Samples bent with 20 mm diameter: ○.

Fig. 12
Fig. 12

a) Breakage area as a function of conductance. Samples bent with 25 mm and 30 mm cylinder and breakage appeared: □. Trend line is drawn with these samples. Not broken samples bent with 30 mm cylinder: ▲, Samples which were bent with 53 mm cylinder × , Reference samples prepared with pulling mode + , References without any sample preparation: ○ (conductance of these was measured at the time of IR measurement); b) Mean temperature increase as a function of conductance.

Tables (2)

Tables Icon

Table 1 Selected dimensions for samples and bending cylinders

Tables Icon

Table 2 Data processing pre-handling steps

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

T p ( x , y ) = T extracted ( x , y ) T rt ,     where x { 1 , 2 , 157 }   and   y { 1 , 2 , 55 }
Md,row( y )=Md[ T n ( x,y )|x{ 1,2,125 } ], where y{ 1,2,49 }
Med( ΔT )=Md( Md,Row( y )|y{ 1,2,49 } ) 
T nm ( x,y )= T n ( x,y )Md,row( y ) ; where x{ 1,2,125 } and y{ 1,2,49 }
Dp(x,y)=Tnm+(x,y)Tnm(x,y),wherex{ 1,2,125}  and y{ 1,2,50}
Δ T minor =Ave( T n ( x,y )|x{1,2,...125} and y{1,2,...48} and Dd&s(x,y)>Dth)
B A minor =0.64 mm×0.64 mm×n,
T nm( ws ) ( x,y )= T n ( x,y )Med( ΔT ); where x{ 1,2,125 } and y{ 1,2,49 }
Md,col( x )=Md[ T nm( ws ) ( x,y )|y{ 1,2,49 } ], where x{ 1,2,125 }
Ave,col( x )=Ave( T nm( ws ) ( x,y )|y{ 1,2,49 }, where x{ 1,2,125 }
Δ T major =Ave(Ave,col( x )|x{ 1,2,125 }and Md,col(x)> CM th
BA major =0.64 mm×0.64 mm×49×n,

Metrics