Abstract

A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6607nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
    [CrossRef] [PubMed]
  2. B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
    [CrossRef]
  3. E. Kretchmann and H. Reather, “Radiative decay of non- radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135 (1968).
  4. F. Xiao, G. Li, K. Alameh, and A. Xu, “Fabry-Pérot-based surface plasmon resonance sensors,” Opt. Lett.37(22), 4582–4584 (2012).
    [CrossRef] [PubMed]
  5. K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
    [CrossRef]
  6. W. B. Lin, J. M. Chovelon, and N. Jaffrezic-Renault, “Fiber-optic surface-plasmon resonance for the determination of thickness and optical constants of thin metal films,” Appl. Opt.39(19), 3261–3265 (2000).
    [CrossRef] [PubMed]
  7. P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple,” Plasmonics8(2), 779–784 (2013).
    [CrossRef]
  8. K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
    [CrossRef]
  9. J. F. Masson, Y. C. Kim, L. A. Obando, W. Peng, and K. S. Booksh, “Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region,” Appl. Spectrosc.60(11), 1241–1246 (2006).
    [CrossRef] [PubMed]
  10. Y. C. Lu, W. P. Huang, and S. S. Jian, “Influence of mode loss on the feasibility of grating-assisted optical fiber surface plasmon resonance refractive index sensors,” J. Lightwave Technol.27(21), 4804–4808 (2009).
    [CrossRef]
  11. C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express21(3), 3055–3066 (2013).
    [CrossRef] [PubMed]
  12. T. Schuster, R. Herschel, N. Neumann, and C. G. Schäffer, “Miniaturized long-period fiber grating assisted surface plasmon resonance sensor,” J. Lightwave Technol.30(8), 1003–1008 (2012).
    [CrossRef]
  13. Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
    [CrossRef] [PubMed]
  14. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
    [CrossRef] [PubMed]
  15. W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
    [CrossRef]
  16. P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
    [CrossRef]
  17. B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
    [CrossRef] [PubMed]
  18. X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
    [CrossRef]
  19. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express14(24), 11616–11621 (2006).
    [CrossRef] [PubMed]
  20. G. Nemova and R. Kashyap, “Modeling of plasmon-polariton refractive-index hollow fiber sensors assisted by a fiber Bragg grating,” J. Lightwave Technol.24(10), 3789–3796 (2006).
    [CrossRef]
  21. L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
    [CrossRef]
  22. N. Croitoru, J. Dror, and I. Gannot, “Characterization of hollow fibers for the transmission of infrared radiation,” Appl. Opt.29(12), 1805–1809 (1990).
    [CrossRef] [PubMed]
  23. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-Agl coatings,” Appl. Opt.44(30), 6449–6455 (2005).
    [CrossRef] [PubMed]
  24. Y. W. Shi, K. Ito, L. Ma, T. Yoshida, Y. Matsuura, and M. Miyagi, “Fabrication of a polymer-coated silver hollow optical fiber with high performance,” Appl. Opt.45(26), 6736–6740 (2006).
    [CrossRef] [PubMed]
  25. K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett.33(4), 318–320 (2008).
    [CrossRef] [PubMed]
  26. A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol.12(1), 87–100 (2006).
    [CrossRef]
  27. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A6(3), 423 (1989).
    [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  29. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem.41(1-3), 207–211 (1997).
    [CrossRef]
  30. M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
    [CrossRef] [PubMed]
  31. H. Y. Lin, C. H. Huang, G. L. Cheng, N. K. Chen, and H. C. Chui, “Tapered optical fiber sensor based on localized surface plasmon resonance,” Opt. Express20(19), 21693–21701 (2012).
    [CrossRef] [PubMed]
  32. H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
    [CrossRef]
  33. A. Shalabney and I. Abdulhalim, “Figure-of-merit enhancement of surface plasmon resonance sensors in the spectral interrogation,” Opt. Lett.37(7), 1175–1177 (2012).
    [CrossRef] [PubMed]

2013 (5)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
[CrossRef] [PubMed]

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple,” Plasmonics8(2), 779–784 (2013).
[CrossRef]

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

C. Caucheteur, V. Voisin, and J. Albert, “Polarized spectral combs probe optical fiber surface plasmons,” Opt. Express21(3), 3055–3066 (2013).
[CrossRef] [PubMed]

2012 (6)

2011 (1)

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

2010 (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

2009 (3)

2008 (2)

K. R. Sui, Y. W. Shi, X. L. Tang, X. S. Zhu, K. Iwai, and M. Miyagi, “Optical properties of AgI/Ag infrared hollow fiber in the visible wavelength region,” Opt. Lett.33(4), 318–320 (2008).
[CrossRef] [PubMed]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

2007 (2)

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based Surface Plasmon Resonance sensors,” Opt. Express15(18), 11413–11426 (2007).
[CrossRef] [PubMed]

2006 (5)

2005 (1)

2002 (1)

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
[CrossRef]

2000 (1)

1997 (1)

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem.41(1-3), 207–211 (1997).
[CrossRef]

1990 (1)

1989 (1)

1968 (1)

E. Kretchmann and H. Reather, “Radiative decay of non- radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135 (1968).

Abdulhalim, I.

Alameh, K.

Albert, J.

Balaa, K.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

Bhatia, P.

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple,” Plasmonics8(2), 779–784 (2013).
[CrossRef]

Bing, P. B.

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Boo, J. L.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Booksh, K. S.

Caucheteur, C.

Chan, C. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Chen, N. K.

Cheng, G. L.

Chovelon, J. M.

Chui, H. C.

Couture, M.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
[CrossRef] [PubMed]

Croitoru, N.

Cuenot, S.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

Di, Z. G.

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Dror, J.

Duan, L. C.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Fassi Fehri, M.

Gannot, I.

Gauvreau, B.

George, R.

Gupta, B. D.

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple,” Plasmonics8(2), 779–784 (2013).
[CrossRef]

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol.12(1), 87–100 (2006).
[CrossRef]

Hao, C. J.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Harrington, J. A.

Hassani, A.

Herschel, R.

Homola, J.

M. Piliarik and J. Homola, “Surface plasmon resonance (SPR) sensors: approaching their limits?” Opt. Express17(19), 16505–16517 (2009).
[CrossRef] [PubMed]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem.41(1-3), 207–211 (1997).
[CrossRef]

Hongo, A.

Huang, C. H.

Huang, W. P.

Ito, K.

Iwai, K.

Jaffrezic-Renault, N.

Jian, S. S.

Kabashin, A.

Kanso, M.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

Kashyap, R.

Kim, Y. C.

Kondoh, J.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

Kretchmann, E.

E. Kretchmann and H. Reather, “Radiative decay of non- radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135 (1968).

Kurihara, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
[CrossRef]

Lee, B.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Leong, K. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Leviatan, Y.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Li, C.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Li, C. M.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Li, G.

Li, Z. Y.

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Lin, H. Y.

Lin, W. B.

Liu, D. M.

B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
[CrossRef] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

Louarn, G.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

Lu, Y.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Lu, Y. C.

Ma, L.

Masson, J. F.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
[CrossRef] [PubMed]

J. F. Masson, Y. C. Kim, L. A. Obando, W. Peng, and K. S. Booksh, “Fiber-optic surface plasmon resonance sensors in the near-infrared spectral region,” Appl. Spectrosc.60(11), 1241–1246 (2006).
[CrossRef] [PubMed]

Matsui, Y.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

Matsuura, Y.

Minea, T.

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

Miyagi, M.

Musideke, M.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Nakamura, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
[CrossRef]

Nemova, G.

Neumann, N.

Obando, L. A.

Pan, S.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Park, J.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Peng, W.

Piliarik, M.

Reather, H.

E. Kretchmann and H. Reather, “Radiative decay of non- radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135 (1968).

Roh, S.

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Saito, M.

Schäffer, C. G.

Schuster, T.

Shalabney, A.

Sharma, A. K.

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol.12(1), 87–100 (2006).
[CrossRef]

Shi, Y. W.

Shuai, B. B.

B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
[CrossRef] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

Shum, P.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Skorobogatiy, M.

Skorobogatiy, M. A.

Sugimoto, M.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

Sui, K. R.

Suzuki, H.

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

Suzuki, K.

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
[CrossRef]

Tang, X. L.

Teo, Z. Y.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Tou, Z. Q.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Voisin, V.

Wen, W. Q.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Wong, W. C.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Wu, B. Q.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Xia, L.

B. B. Shuai, L. Xia, Y. T. Zhang, and D. M. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express20(6), 5974–5986 (2012).
[CrossRef] [PubMed]

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

Xiao, F.

Xu, A.

Yan, M.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Yang, H. B.

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

Yao, J. Q.

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Yoshida, T.

Yu, X.

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, Y.

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

Zhang, Y. T.

Zhao, S. S.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
[CrossRef] [PubMed]

Zhou, C.

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

Zhu, X. S.

Appl. Opt. (4)

Appl. Spectrosc. (1)

IEEE J. Sel. Top. Quant. (1)

W. C. Wong, C. C. Chan, J. L. Boo, Z. Y. Teo, Z. Q. Tou, H. B. Yang, C. M. Li, and K. C. Leong, “Photonic Crystal Fiber Surface Plasmon Resonance Biosensor Based on Protein G Immobilization,” IEEE J. Sel. Top. Quant.19(3), 4602107 (2013).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. (1)

X. Yu, Y. Zhang, S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensor,” J. Opt.12(1), 015005 (2010).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mod. Phys. Lett. B (1)

P. B. Bing, Z. Y. Li, J. Q. Yao, Y. Lu, and Z. G. Di, “A photonic crystal fiber based on surface plasmon resonance temperature sensor with liquid core,” Mod. Phys. Lett. B26(13), 1250082 (2012).
[CrossRef]

Opt. Commun. (1)

L. Xia, Y. Zhang, C. Zhou, B. B. Shuai, and D. M. Liu, “Numerical analysis of plasmon polarition RI fiber sensors with hollow core and a long period grating,” Opt. Commun.284(12), 2835–2838 (2011).
[CrossRef]

Opt. Express (6)

Opt. Fiber Technol. (2)

A. K. Sharma and B. D. Gupta, “Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection,” Opt. Fiber Technol.12(1), 87–100 (2006).
[CrossRef]

B. Lee, S. Roh, and J. Park, “Current status of micro-and nano-structured optical fiber sensors,” Opt. Fiber Technol.15(3), 209–221 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys.15(27), 11190–11216 (2013).
[CrossRef] [PubMed]

Plasmonics (1)

P. Bhatia and B. D. Gupta, “Surface plasmon resonance based fiber optic ammonia sensor utilizing bromocresol purple,” Plasmonics8(2), 779–784 (2013).
[CrossRef]

Sens. Actuators B Chem. (4)

K. Balaa, M. Kanso, S. Cuenot, T. Minea, and G. Louarn, “Experimental realization and numerical simulation of wavelength-modulated fibre optic sensor based on surface plasmon resonance,” Sens. Actuators B Chem.126(1), 198–203 (2007).
[CrossRef]

K. Kurihara, K. Nakamura, and K. Suzuki, “Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle,” Sens. Actuators B Chem.86(1), 49–57 (2002).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem.41(1-3), 207–211 (1997).
[CrossRef]

H. Suzuki, M. Sugimoto, Y. Matsui, and J. Kondoh, “Effects of gold film thickness on spectrum profile and sensitivity of a multimode-optical-fiber SPR sensor,” Sens. Actuators B Chem.132(1), 26–33 (2008).
[CrossRef]

Sensors (1)

Y. Lu, C. J. Hao, B. Q. Wu, M. Musideke, L. C. Duan, W. Q. Wen, and J. Q. Yao, “Surface plasmon resonance sensor based on polymer photonic crystal fibers with metal nanolayers,” Sensors13(1), 956–965 (2013).
[CrossRef] [PubMed]

Z. Naturforsch. A (1)

E. Kretchmann and H. Reather, “Radiative decay of non- radiative surface plasmons excited by light,” Z. Naturforsch. A23, 2135 (1968).

Other (1)

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sketch and ray model of the HF SPR sensor. (a) Lengthwise section. (b) Cross section.

Fig. 2
Fig. 2

Schematic diagram of the deposition method.

Fig. 3
Fig. 3

Schematic diagram of the experimental set-up.

Fig. 4
Fig. 4

Normalized measured transmission spectra of HFs with different n0, the corresponding n0 is labeled in the figure. (a) Silver layer thickness is 30 nm. (b) Silver layer thickness is 57 nm.

Fig. 5
Fig. 5

Theoretical and measured results of RW and sensitivity for the two HF sensors with the silver layer thickness of 30nm and 57nm. (a) RW versus n0. (b) Sensitivity versus n0. (c) Resolution versus n0.

Fig. 6
Fig. 6

SEM pictures of the cross section and the interface of the silver layer and the cladding silica layer. The deposition time is 30s (a) and 40s (b).

Fig. 7
Fig. 7

(a) Comparison of measured transmission spectra and theoretical results with different ϕ 0 . (b) FWHM versus n0. (c) FOM versus n0.

Tables (1)

Tables Icon

Table 1 Characteristics of the HF SPR Sensors with Different Deposition Time

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

2π λ ε 0 cosθ= 2π λ ε 1 ε 2 ε 1 + ε 2 ,
P i (ϕ) e - ϕ 2 ϕ 0 (λ) 2 ,
P o = 0 θ max P i (θ) R p (θ) K dθ,
K= L Dcot(θ) .
T= 0 θ max P i (θ)sin(θ) R p (θ) K dθ 0 θ max P i (θ)sin(θ)dθ .

Metrics