Abstract

Scalable microfabrication technology has enabled semiconductor and microelectronics industries, among other fields. Meanwhile, rapid and sensitive bio-molecule detection is increasingly important for drug discovery and biomedical diagnostics. In this work, we designed and demonstrated that photonic crystal sensor chips have high sensitivity for protein detection and can be mass-produced with scalable deep-UV lithography. We demonstrated label-free detection of carcinoembryonic antigen from pg/mL to μg/mL, with high quality factor photonic crystal nanobeam cavities.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971).
    [CrossRef] [PubMed]
  2. B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971).
    [CrossRef]
  3. D. J. Cahill, “Protein and antibody arrays and their medical applications,” J. Immunol. Methods250, 81–91 (2001).
    [CrossRef] [PubMed]
  4. T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol.8, 105–115 (2001).
    [CrossRef] [PubMed]
  5. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
    [CrossRef]
  6. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
    [CrossRef] [PubMed]
  7. M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
    [CrossRef]
  8. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004).
    [CrossRef] [PubMed]
  9. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express16, 8174–8180 (2008).
    [CrossRef] [PubMed]
  10. A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
    [CrossRef]
  11. B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
    [CrossRef]
  12. T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18, 5420–5425 (2010).
    [CrossRef] [PubMed]
  13. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
    [CrossRef] [PubMed]
  14. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
    [CrossRef]
  15. D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
    [CrossRef]
  16. D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.
  17. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008).
    [CrossRef] [PubMed]
  18. A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
    [CrossRef] [PubMed]
  19. J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009).
    [CrossRef] [PubMed]
  20. S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
    [CrossRef]
  21. M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
    [CrossRef]
  22. M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
    [CrossRef] [PubMed]
  23. S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
    [CrossRef] [PubMed]
  24. S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
    [CrossRef] [PubMed]
  25. M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012).
    [CrossRef]
  26. W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013).
    [CrossRef]
  27. S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express21, 12815–12821 (2013).
    [CrossRef]
  28. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
    [CrossRef]
  29. S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
    [PubMed]
  30. I. Langmuir, “The adsorption of gases on plane surface of glass, mica and platinum,” The Research Laboratory of The General Electric Company: 1361–1402 (1918).
  31. R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
    [CrossRef]

2013

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013).
[CrossRef]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

S. Hachuda, S. Otsuka, S. Kita, T. Isono, M. Narimatsu, K. Watanabe, Y. Goshima, and T. Baba, “Selective detection of sub-atto-molar Streptavidin in 1013-fold impure sample using photonic crystal nanolaser sensors,” Opt. Express21, 12815–12821 (2013).
[CrossRef]

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
[CrossRef]

2012

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012).
[CrossRef]

2011

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
[CrossRef] [PubMed]

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

2010

T. Xu, N. Zhu, M. Y. C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express18, 5420–5425 (2010).
[CrossRef] [PubMed]

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

2009

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
[CrossRef] [PubMed]

J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009).
[CrossRef] [PubMed]

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
[CrossRef]

2008

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008).
[CrossRef] [PubMed]

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express16, 8174–8180 (2008).
[CrossRef] [PubMed]

2006

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

2004

2003

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

2001

D. J. Cahill, “Protein and antibody arrays and their medical applications,” J. Immunol. Methods250, 81–91 (2001).
[CrossRef] [PubMed]

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol.8, 105–115 (2001).
[CrossRef] [PubMed]

1998

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

1995

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

1971

E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971).
[CrossRef] [PubMed]

B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971).
[CrossRef]

Abraham, R.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Aitchison, J. S.

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008).
[CrossRef] [PubMed]

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Baba, T.

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Bailey, R. C.

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013).
[CrossRef]

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012).
[CrossRef]

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
[CrossRef] [PubMed]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Burr, G. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Buxbaum, S.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Bynum, M. A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Cahill, D. J.

D. J. Cahill, “Protein and antibody arrays and their medical applications,” J. Immunol. Methods250, 81–91 (2001).
[CrossRef] [PubMed]

Chakravarty, S.

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

Chen, R. T.

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

Chow, E.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004).
[CrossRef] [PubMed]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

Di Falco, A.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
[CrossRef] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
[CrossRef]

Dundar, M. A.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Engvall, E.

E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971).
[CrossRef] [PubMed]

Erickson, D.

J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009).
[CrossRef] [PubMed]

Esener, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Fauchet, P. M.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Girolami, G.

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Goddard, J. M.

J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009).
[CrossRef] [PubMed]

Goshima, Y.

Grot, A.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004).
[CrossRef] [PubMed]

Guillermain, E.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
[CrossRef] [PubMed]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Hachuda, S.

He, S. L.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Isono, T.

Ji, Y.

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
[CrossRef]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

John, L.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Karouta, F.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Kita, S.

Kodadek, T.

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol.8, 105–115 (2001).
[CrossRef] [PubMed]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Krauss, T. F.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
[CrossRef] [PubMed]

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
[CrossRef]

Lai, W.

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

Langmuir, I.

I. Langmuir, “The adsorption of gases on plane surface of glass, mica and platinum,” The Research Laboratory of The General Electric Company: 1361–1402 (1918).

Liang, F.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Loncar, M.

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Luchansky, M. S.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012).
[CrossRef]

Maestranzi, S.

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

Michael, D.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Miller, B. L.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Mirkarimi, L. W.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004).
[CrossRef] [PubMed]

Mitchell, H.

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

Narimatsu, M.

Notzel, R.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Nozaki, K.

O’Faolain, L.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
[CrossRef]

Otsuka, S.

Pal, S.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Perlmann, P.

E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971).
[CrossRef] [PubMed]

Przemioslo, R.

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

Qiu, Y. M.

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Quan, Q.

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
[CrossRef]

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express19, 18529–18542 (2011).
[CrossRef] [PubMed]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Robotti, K. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Ruda, H. E.

Scherer, A.

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Schuurs, A. H.

B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971).
[CrossRef]

Scullion, M. G.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
[CrossRef] [PubMed]

Sherwood, R. A.

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

Shia, W. W.

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013).
[CrossRef]

Sigalas, M.

Sigalas, M. M.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Smith, R.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Spaugh, B.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Sriram, R.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Tian, H.

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
[CrossRef]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

van der Heijden, R. W.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Van Weeman, B. K.

B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971).
[CrossRef]

Venti, C.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008).
[CrossRef] [PubMed]

Wang, B. W.

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Wang, C.

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Washburn, A. L.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
[CrossRef] [PubMed]

Watanabe, K.

Wosinski, L.

Xu, M. Y. C.

Xu, T.

Yang, D.

D. Yang, H. Tian, Y. Ji, and Q. Quan, “Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors,” J. Opt. Soc. Am. B30, 2027–2031 (2013).
[CrossRef]

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

Zhu, N.

Zlatanovic, S.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Zou, Y.

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

Anal. Chem.

A. L. Washburn, L. C. Gunn, and R. C. Bailey, “Label-free quantitation of a cancer biomarker in complex media using silicon photonic microring resonators,” Anal. Chem.81, 9499–9506 (2009).
[CrossRef] [PubMed]

Anal. Bioanal. Chem.

J. M. Goddard and D. Erickson, “Bioconjugation techniques for microfluidic biosensors,” Anal. Bioanal. Chem.394, 469–479 (2009).
[CrossRef] [PubMed]

Anal. Chem.

M. S. Luchansky and R. C. Bailey, “High-Q optical sensors for chemical and biological analysis,” Anal. Chem.84, 793–821 (2012).
[CrossRef]

W. W. Shia and R. C. Bailey, “Single domain antibodies for the detection of ricin using silicon,” Anal. Chem.85, 805–810 (2013).
[CrossRef]

Ann. Clin. Biochem.

S. Maestranzi, R. Przemioslo, H. Mitchell, and R. A. Sherwood, “The effect of benign and malignant liver disease on the tumour markers CA19-9 and CEA,” Ann. Clin. Biochem.35, 99–103 (1998).
[PubMed]

Appl. Phys. Lett.

A. Di Falco, L. O’Faolain, and T. F. Krauss, “Chemical sensing in slotted photonic crystal heterostructure cavities,” Appl. Phys. Lett.94, 063503 (2009).
[CrossRef]

B. W. Wang, M. A. Dundar, R. Notzel, F. Karouta, S. L. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Appl. Phys. Lett.97, 151105 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

M. Loncar, A. Scherer, and Y. M. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Biosens. Bioelectron.

M. G. Scullion, A. Di Falco, and T. F. Krauss, “Slotted photonic crystal cavities with integrated microfluidics for biosensing applications,” Biosens. Bioelectron.27, 101–105 (2011).
[CrossRef] [PubMed]

S. Chakravarty, Y. Zou, W. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38, 170–176 (2012).
[CrossRef] [PubMed]

Biosens. Bioelectron.

S. Pal, E. Guillermain, R. Sriram, B. L. Miller, and P. M. Fauchet, “Silicon photonic crystal nanocavity-coupled waveguides for error-corrected optical biosensing,” Biosens. Bioelectron.26, 4024–4031 (2011).
[CrossRef] [PubMed]

Chem. Biol.

T. Kodadek, “Protein microarrays: prospects and problems,” Chem. Biol.8, 105–115 (2001).
[CrossRef] [PubMed]

FEBS. Lett

B. K. Van Weeman and A. H. Schuurs, “Immunoassay using antigen-enzyme conjugates,” FEBS. Lett15, 232–236 (1971).
[CrossRef]

IEEE Sel. Top. Quantum Electron.

M. Iqbal, M. A. Gleeson, B. Spaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free biosensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Immunochemistry

E. Engvall and P. Perlmann, “Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G,” Immunochemistry8, 871–874 (1971).
[CrossRef] [PubMed]

J. Immunol. Meth.

R. Abraham, S. Buxbaum, L. John, R. Smith, C. Venti, and D. Michael, “Screening and kinetic analysis of recombinant anti-CEA antibody fragments,” J. Immunol. Meth.183, 119–125 (1995).
[CrossRef]

J. Immunol. Methods

D. J. Cahill, “Protein and antibody arrays and their medical applications,” J. Immunol. Methods250, 81–91 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys.45, 6071–6077 (2006).
[CrossRef]

Nano Lett.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods5, 591–596 (2008).
[CrossRef] [PubMed]

Nature

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Sens. Actuators B Chem.

S. Zlatanovic, L. W. Mirkarimi, M. M. Sigalas, M. A. Bynum, E. Chow, K. M. Robotti, G. W. Burr, S. Esener, and A. Grot, “Photonic crystal microcavity sensor for ultracompact monitoring of reaction kinetics and protein concentration,” Sens. Actuators B Chem.141, 13–19 (2009).
[CrossRef]

Other

D. Yang, S. Kita, F. Liang, C. Wang, H. Tian, Y. Ji, M. Loncar, and Q. Quan, “High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing,” submitted.

I. Langmuir, “The adsorption of gases on plane surface of glass, mica and platinum,” The Research Laboratory of The General Electric Company: 1361–1402 (1918).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image of a photonic crystal nanobeam cavity. (b) Photonic circuits that consist of waveguides (green lines), cavities (in red boxes) and grating couplers (in black boxes). (c) SEM image of the grating coupler. (d) Photograph of the 200mm wafer, diced into ∼150 sensor chips.

Fig. 2
Fig. 2

(a) Transmission spectrum of the nanobeam cavity measured by scanning the tunable laser from 1470nm to 1570nm. The Q-factor of the fundamental mode (resonant at 1482nm in air) is 14,000 obtained by fitting to a Lorentzian line-shape. (b)&(c) Q-factors and resonance wavelengths of 28 samples, fabricated with different dosages in the range of (19 ± 1.6)mJ/cm2. (d) Output signal normalized to its maximum as the fiber array is scanned around its optimal coupling position with 1550nm laser. Coupling decreases to the half-maximum value at ±2μm away from the center, displaying a high alignment tolerance.

Fig. 3
Fig. 3

(a) Liquids with different refractive indices (methanol, DI water, acetone, ethanol and isopropyl alcohol) were injected into the sensor. Resonance of the sensor v.s. their refractive indices displaces a linear relation. The red line is the linear fit. (b) Real-time resonance shifts as 3-aminopropyltrimethoxysilane (APTES) was injected into the channel, followed by wash with ethanol. (c) Real-time resonance shift as anti-CEA was bound on the sensor surface, followed by wash with PBS. (d) Resonance signal before and after the CEA sensing experiment. (e) Real-time resonance shift as different concentrations of CEA (0.1, 1, 10, 100pg/mL; 1, 10, 100ng/mL and 1, 10μg/mL in PBS) were consecutively injected into the channel. The red dotted line indicates each concentration, and the PBS-wash step between two consecutive concentrations. (f) Resonance shift v.s. concentration of CEA, and fitted with Langmuir equation. A dissociation constant of 14ng/mL is obtained from fitting.

Metrics