Abstract

One of the most promising concepts of starlight suppression for direct imaging of exoplanets is flying a specially-shaped external occulter in formation with a space telescope. Here we present contrast performance verification of an occulter design scaled to laboratory-size using Fresnel numbers corresponding to the space design. Experimental design innovations include usage of an expanding beam to minimize phase aberrations, and an outer ring to minimize hard-edge diffraction effects. The apodizing performance of the optimized occulter edge is compared with a baseline case of a circular occulter and shown to result in contrast improvements. Experimental results in red monochromatic light show that the achieved laboratory contrast exceeds ten orders of magnitude, but with differences from the theoretical diffraction analysis limited by specular reflection from the mask edges.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
    [CrossRef] [PubMed]
  2. S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
    [CrossRef] [PubMed]
  3. L. Spitzer, “The beginnings and future of space astronomy,” Am. Sci.50, 473–484 (1962).
  4. A. Fresnel, Oeuvres completes d’Augustin Fresnel: theorie de la lumiere (Imprimerie imperiale, 1866).
  5. C. Copi and G. Starkman, “Big occulting steerable satellite,” Astrophys. J.532, 581–592 (2000).
    [CrossRef]
  6. R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
    [CrossRef]
  7. W. Cash, “Detection of earth-like planets around nearby stars using a petal-shaped occulter,” Nature442, 51–53 (2006)
    [CrossRef] [PubMed]
  8. R. Vanderbei, E. Cady, and N.J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J.665, 794–798 (2007).
    [CrossRef]
  9. N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
    [CrossRef]
  10. R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
    [CrossRef]
  11. R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
    [CrossRef]
  12. E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
    [CrossRef]
  13. J. Goodman, Introduction to Fourier optics (Roberts & Co., 2005).
  14. E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of optics (Cambridge University Press, 1999).
  16. E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
    [CrossRef]
  17. E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
    [CrossRef]
  18. R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).
  19. R. Hogg and E. Tanis, Probability and statistical inference (MacMillan Publishing Company, 1993).
  20. A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).
  21. S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

2007 (1)

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

2006 (1)

W. Cash, “Detection of earth-like planets around nearby stars using a petal-shaped occulter,” Nature442, 51–53 (2006)
[CrossRef] [PubMed]

2005 (1)

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

2003 (1)

R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
[CrossRef]

2002 (1)

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

2000 (1)

C. Copi and G. Starkman, “Big occulting steerable satellite,” Astrophys. J.532, 581–592 (2000).
[CrossRef]

1962 (1)

L. Spitzer, “The beginnings and future of space astronomy,” Am. Sci.50, 473–484 (1962).

Balasubramanian, K.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of optics (Cambridge University Press, 1999).

Cady, E.

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

R. Vanderbei, E. Cady, and N.J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J.665, 794–798 (2007).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Card., G.

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

Carr, M.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Cash, W.

W. Cash, “Detection of earth-like planets around nearby stars using a petal-shaped occulter,” Nature442, 51–53 (2006)
[CrossRef] [PubMed]

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

Copi, C.

C. Copi and G. Starkman, “Big occulting steerable satellite,” Astrophys. J.532, 581–592 (2000).
[CrossRef]

Crawford, S.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Des Marais, D.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Dickie, M.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Dumont, P.

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

Ebbesen, T.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Echternach, P.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

Ford, E.

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

Fresnel, A.

A. Fresnel, Oeuvres completes d’Augustin Fresnel: theorie de la lumiere (Imprimerie imperiale, 1866).

Garcia-Vidal., F.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Glassman, T.

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

Goodman, J.

J. Goodman, Introduction to Fourier optics (Roberts & Co., 2005).

Groff, T.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

Harwit, M.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Hogg, R.

R. Hogg and E. Tanis, Probability and statistical inference (MacMillan Publishing Company, 1993).

Hoppe, D.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Johnson, A.

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

Johnson, T.

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

Jucks, K.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Kasdin, N. J.

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

Kasdin, N.J.

R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

R. Vanderbei, E. Cady, and N.J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J.665, 794–798 (2007).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
[CrossRef]

Kasting, J.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Khayatian, B.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Kim, T.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Krishnana, A.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Kunine, J.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Laftchiev, C.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

Lee, S.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Leviton, D.

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

Lezec, H.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Lin, D.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Lisman, P.

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

Lisman, P. D.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Martin, S. R.

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Martin-Moreno, L.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

McElwain, M.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

Oakley, P.

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

Pendry, J.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Pueyo, L.

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
[CrossRef]

Samuele, R.

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

Schafer, J.

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

Schindhelm, E.

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

Schneider, J.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Seager, S.

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Shaklan, S.

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

Shipley, A.

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

Sirbu, D.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Sivaramakrishnan, A.

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

Soummer, R.

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
[CrossRef]

Spergel, D.

R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
[CrossRef]

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

Spitzer, L.

L. Spitzer, “The beginnings and future of space astronomy,” Am. Sci.50, 473–484 (1962).

Starkman, G.

C. Copi and G. Starkman, “Big occulting steerable satellite,” Astrophys. J.532, 581–592 (2000).
[CrossRef]

Tanis, E.

R. Hogg and E. Tanis, Probability and statistical inference (MacMillan Publishing Company, 1993).

Thio, T.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Traub, W.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Turner, E.

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

Vanderbei, R.

R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

R. Vanderbei, E. Cady, and N.J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J.665, 794–798 (2007).
[CrossRef]

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

Vanderbei, R. J.

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

Varshneya, R.

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

White, V.

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of optics (Cambridge University Press, 1999).

Wolff, P.

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

Woolf, N.

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

Am. Sci. (1)

L. Spitzer, “The beginnings and future of space astronomy,” Am. Sci.50, 473–484 (1962).

Astrobiology (2)

D. Des Marais, M. Harwit, K. Jucks, J. Kasting, D. Lin, J. Kunine, J. Schneider, S. Seager, W. Traub, and N. Woolf, “Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets,” Astrobiology2, 153–181 (2002).
[CrossRef] [PubMed]

S. Seager, E. Turner, J. Schafer, and E. Ford, “Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants,” Astrobiology5, 372–390 (2005).
[CrossRef] [PubMed]

Astrophys. J. (2)

C. Copi and G. Starkman, “Big occulting steerable satellite,” Astrophys. J.532, 581–592 (2000).
[CrossRef]

R. Vanderbei, D. Spergel, and N.J. Kasdin, “Circularly symmetric apodization via star-shaped masks,” Astrophys. J.599, 686–694 (2003).
[CrossRef]

Nature (1)

W. Cash, “Detection of earth-like planets around nearby stars using a petal-shaped occulter,” Nature442, 51–53 (2006)
[CrossRef] [PubMed]

Opt. Express (1)

R. Soummer, L. Pueyo, A. Sivaramakrishnan, and R. J. Vanderbei, “Fast computation of Lyot-style coronagraph propagation,” Opt. Express15(24), 159345 (2007).

Other (14)

R. Hogg and E. Tanis, Probability and statistical inference (MacMillan Publishing Company, 1993).

A. Krishnana, T. Thio, T. Kim, H. Lezec, T. Ebbesen, P. Wolff, J. Pendry, L. Martin-Moreno, and F. Garcia-Vidal., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun.200 (2001).

S. R. Martin, S. Shaklan, S. Crawford, S. Lee, B. Khayatian, D. Hoppe, E. Cady, and P. D. Lisman, “Starshade optical edge modeling, requirements and laboratory tests,” Proc. SPIE8864 (2013).

A. Fresnel, Oeuvres completes d’Augustin Fresnel: theorie de la lumiere (Imprimerie imperiale, 1866).

R. Vanderbei, E. Cady, and N.J. Kasdin, “Optimal occulter design for finding extrasolar planets,” Astrophys. J.665, 794–798 (2007).
[CrossRef]

N. J. Kasdin, E. Cady, P. Dumont, P. Lisman, S. Shaklan, R. Soummer, D. Spergel, and R. Vanderbei, “Occulter design for THEIA,” Proc. SPIE7440 (2009).
[CrossRef]

R. Samuele, T. Glassman, A. Johnson, R. Varshneya, and A. Shipley, “Starlight suppression from the starshade testbed at NGAS,” Proc. SPIE7440 (2009).
[CrossRef]

R. Samuele, R. Varshneya, T. Johnson, A. Johnson, and T. Glassman, “Progress at the starshade testbed at Northrop Grumman Aerospace Systems comparisons with computer simulations,” Proc. SPIE7731 (2010).
[CrossRef]

E. Schindhelm, A. Shipley, P. Oakley, D. Leviton, W. Cash, and G. Card., “Laboratory studies of petal-shaped occulters, ” Proc. SPIE6693 (2007).
[CrossRef]

J. Goodman, Introduction to Fourier optics (Roberts & Co., 2005).

E. Cady, L. Pueyo, R. Soummer, and N.J. Kasdin, “Performance of hybrid occulters using apodized pupil Lyot coronagraphy,” Proc. SPIE7010 (2008).
[CrossRef]

M. Born and E. Wolf, Principles of optics (Cambridge University Press, 1999).

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, T. Groff, N.J. Kasdin, C. Laftchiev, M. McElwain, D. Sirbu, R. Vanderbei, and V. White, “Progress on the occulter experiment at Princeton,” Proc. SPIE7440 (2009).
[CrossRef]

E. Cady, K. Balasubramanian, M. Carr, M. Dickie, P. Echternach, N.J. Kasdin, S. Shaklan, D. Sirbu, and V. White, “Broadband suppression and occulter position sensing at the Princeton occulter testbed,” Proc. SPIE7731 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic of occulter mission concept—the occulter blocks starlight from reaching the telescope pupil, but allows light from the exoplanet. Using the parameters for a proposed, realistic space mission design [9], a numerical simulation shows the suppression performance across the pupil plane (b) and the contrast for the starlight residual point spread function (c). The white circle in (b) shows the location of the 4-m telescope centered in the shadow. The red circle in (c) shows the 75 mas inner working angle of the occulter—planets can be directly imaged outside this angle.

Fig. 2
Fig. 2

Change of variables resulting in diverging beam scaling. The extremity of the mask under a collimated beam is shrunk by a factor γ, whereas the extremity of the shadow is increased by a factor γ. The divergence angle is given by the proximity h of the source and through similar triangles an expression for γ can be found.

Fig. 3
Fig. 3

Resulting optimized apodization profile ouput for the (a) inner occulter (b) outer ring.

Fig. 4
Fig. 4

(a) A comparison of the laboratory apodization profiles for the optimized occulter mask and for the control mask. (b) Sixteen petal binary realization of occulter mask (c) Picture of the silicon-etched occulter mask used in the laboratory. (d) Circular occulter baseline mask with sixteen support struts.

Fig. 5
Fig. 5

Layout of the Princeton Occulter Testbed. On the left-end of the enclosure is the optical table containing the artificial star and on the right-end is the moveable telescope.

Fig. 6
Fig. 6

Simulation of contrast in the image plane (a) using the control mask (b) using the occulter mask. The inner and outer red circles denote the annular dark region for both masks.

Fig. 7
Fig. 7

Contrast measurements at the image plane (a) using the control mask and (b) using the occulter mask. The inner and outer red circles denote the annular dark region for both masks.

Fig. 8
Fig. 8

Azimuthal cross-sections through the image plane of (a) the control mask (b) occulter mask comparing the theoretical median with the measured median and its 95 % confidence interval. The dotted vertical lines represent the inner and outer working angles of the annular openings and the 50 % throughput point for the occulter mask (c) Location of the wedge areas used to create the azimuthal cross-section for the occulter mask shown with lighter hue.

Fig. 9
Fig. 9

Experimental contrast results for the (a) control mask, (b) control mask using the same log stretch as the (c) occulter mask. Four equal area regions are shown in yellow. The mean contrast across the control mask strut in Region 1 is 6.03 × 10−9, while in Region 2 which has no strut the mean contrast is 1.02 × 10−9. The mean contrast across the occulter mask strut in Region 3 is 3.63 × 10−9 while in Region 4 which has no strut the mean contrast is 3.31 × 10−11.

Fig. 10
Fig. 10

Equal log-stretched saturated images with different entrance apertures: (a) f/22 circular, and (b) f/47 circular.

Fig. 11
Fig. 11

Numerical simulation including glint point sources (a) Contrast shown in image plane limited in the dark annular region by superposition of the PSFs (b) Corresponding azimuthal cross-section using wedges.

Fig. 12
Fig. 12

(a) Theoretical point spread function using a paraxial input beam (b) Residual point spread function when subtracting from the theoretical spherical beam point spread function.

Tables (2)

Tables Icon

Table 1 Summary of experimental parameters and their equivalent space scaling.

Tables Icon

Table 2 Summary of simulation parameters.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E ap ( ρ ) = 2 π i λ z e π i λ z ρ 2 0 R e π i λ z r 2 J 0 ( 2 π r ρ λ z ) A ( r ) r d r
E ap ( ρ ) = 2 π γ 2 i λ z e π i λ z ρ 2 γ 2 0 R e π i λ z γ 2 r 2 A ( r ) J 0 ( 2 π r ρ λ z ) r d r
E ap ( ρ ) = 2 π γ 2 i λ z e π i λ z ρ 2 γ 2 0 R e π i λ r 2 z e π i λ r 2 h A ( r ) J 0 ( 2 π r ρ λ z ) r d r
E in ( r ) = 1 h 2 + r 2 e 2 π i λ h 2 + r 2
1 h e 2 π i λ h e π i λ r 2 h
F eq = F oc + F div = R 2 λ ( 1 z + 1 h ) = R 2 λ 1 z = F orig
E occ ( ρ ) = 1 2 π i λ z e π i λ z ρ 2 0 R e π i λ z r 2 A ¯ inn ( r ) J 0 ( 2 π r ρ λ z ) r d r
min : c subj . to : c 2 Re ( E occ ( ρ ; λ ) ) c 2 c 2 Im ( E occ ( ρ ; λ ) ) c 2 s 0 A ¯ inn ( r ) = 1 , 0 r a inn d A ¯ inn ( r ) d r 0 , | d 2 A ¯ inn ( r ) d r 2 | σ , 0 r R inn
S = { ( r , θ ) , 0 r R , θ Θ ( r ) }
Θ ( r ) = n = 0 N 1 [ 2 π n N π N A ( r ) , 2 π n N + π N A ( r ) ]
E bin ( ρ , ϕ ) = 1 i λ z S E in ( r ) e π i λ z ( r 2 + ρ 2 ) e 2 π i λ z r ρ cos ( θ ϕ ) r d r d θ
e i 2 π r ρ λ z cos ( θ ϕ ) = m = i m J m ( 2 π r ρ λ z ) e i m ( θ ϕ )
E bin ( ρ , ϕ ) = 2 π i λ z 0 R E in ( r ) e π i λ z ( r 2 + ρ 2 ) J 0 ( 2 π r ρ λ z ) A ( r ) r d r + k = 1 4 π cos ( k N ϕ ) i λ z 0 R E in ( r ) e π i λ z ( r 2 + ρ 2 ) J k N ( 2 π r ρ λ z ) sin ( k π A ( r ) ) k π r d r
p ( x , y ) = { 1 , x 2 + y 2 r a 0 , else .
E im ( u , v ) = 1 i λ s p ( x , y ) = 1 E pup ( x , y ) e π i λ d ( x 2 + y 2 ) e 2 π i λ s ( x u + y v ) d x d y
E pup ( x , y ) = E bin ( x , y ) + δ j = 1 N e 2 π i ( ( u j x ) 2 + ( v j y ) 2 + z 2 + u j 2 + v j 2 + z 0 2 ) λ

Metrics