Abstract

We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2, 1544–1559 (2010).
    [CrossRef] [PubMed]
  2. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
    [CrossRef] [PubMed]
  3. M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
    [CrossRef]
  4. M. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express15, 4530–4535 (2007).
    [CrossRef] [PubMed]
  5. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
    [CrossRef] [PubMed]
  6. M. Loncar, A. Scherer, and Y. Qiu, “Phrotonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
    [CrossRef]
  7. E. Chow, A. Grot, W. L. Mirkarami, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett.29, 1093–1095 (2004).
    [CrossRef] [PubMed]
  8. C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
    [CrossRef]
  9. F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
    [CrossRef] [PubMed]
  10. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
    [CrossRef] [PubMed]
  11. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
    [CrossRef]
  12. L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
    [CrossRef] [PubMed]
  13. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
    [CrossRef]
  14. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
    [CrossRef] [PubMed]
  15. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
    [CrossRef] [PubMed]
  16. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
    [CrossRef]
  17. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
    [CrossRef]
  18. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett.21, 453–455 (1996).
    [CrossRef] [PubMed]
  19. K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
    [CrossRef] [PubMed]
  20. J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
    [CrossRef] [PubMed]
  21. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
    [CrossRef]
  22. S. Arnold, M. Khoshsim, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whisper-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
    [CrossRef] [PubMed]
  23. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express11, 2927–2939 (2003).
    [CrossRef] [PubMed]
  24. D. M. Wieliczka, S. Weng, and M. R. Querry, “Wedge shaped cell for highly absorbant liquids: infrared optical constants of water,” Appl. Opt.28, 1714–1719 (1989).
    [CrossRef] [PubMed]
  25. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett.31, 1896–1898 (2006).
    [CrossRef] [PubMed]
  26. V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
    [CrossRef]
  27. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
    [CrossRef]

2013 (1)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

2012 (3)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

2011 (2)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

2010 (3)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2, 1544–1559 (2010).
[CrossRef] [PubMed]

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

2009 (3)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

2008 (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
[CrossRef] [PubMed]

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (2)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
[CrossRef]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett.31, 1896–1898 (2006).
[CrossRef] [PubMed]

2004 (2)

2003 (4)

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

1996 (1)

1989 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Armani, A. M.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2, 1544–1559 (2010).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett.31, 1896–1898 (2006).
[CrossRef] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsim, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whisper-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Baehr-Jones, T.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Bailey, R. C.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Chao, C. Y.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
[CrossRef]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Chow, E.

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
[CrossRef] [PubMed]

Fan, X. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Fauchet, P. M.

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Fung, W.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
[CrossRef]

Girolami, G.

Gleeson, M. A.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
[CrossRef] [PubMed]

Gorodetsky, M. L.

Grot, A.

Gunn, L. C.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Gunn, W. G.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Guo, L. J.

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

He, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Hochberg, M.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

S. Arnold, M. Khoshsim, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whisper-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Hunt, H. K.

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2, 1544–1559 (2010).
[CrossRef] [PubMed]

Ilchenko, V. S.

Iqbal, M.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
[CrossRef] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

Khoshsim, M.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Kim, W.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Lee, M.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Loncar, M.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Phrotonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
[CrossRef] [PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

McNab, S. J.

Mirkarami, W. L.

Moll, N.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Ozdemir, S. K.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, “Phrotonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

Querry, M. R.

Savchenkov, A. A.

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, “Phrotonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Shopova, S. I.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Sigalas, M.

Sonnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Sqaugh, B.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Sun, Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Teraoka, I.

S. Arnold, M. Khoshsim, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whisper-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Tybor, F.

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Vahala, K. J.

Vlasov, Y. A.

Vollmer, F.

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
[CrossRef] [PubMed]

S. Arnold, M. Khoshsim, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whisper-gallery modes in microspheres by protein adsorption,” Opt. Lett.28, 272–274 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

Voros, J.

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
[CrossRef] [PubMed]

Wan, Z.

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Weng, S.

White, I. M.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Wieliczka, D. M.

Xiao, Y.-F.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Yang, L.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Zhu, H. Y.

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Zhu, J.

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620, 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stablization using an optical resonator,” Appl. Phys. B31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett. (5)

V. R. Dantham, S. Holler, V. Kolchenko, Z. Wan, and S. Arnold, “Taking whispering gallery-mode single virus detection and sizing to the limit,” Appl. Phys. Lett.101, 043704 (2012).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett.60, 4057–4059 (2002).
[CrossRef]

M. Loncar, A. Scherer, and Y. Qiu, “Phrotonic crystal laser sources for chemical detection,” Appl. Phys. Lett.82, 4648–4650 (2003).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94, 121106 (2009).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett.96, 203102 (2010).
[CrossRef]

Biophys. J. (1)

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Y. Chao, W. Fung, and L. J. Guo, “Polymer microring resonators for biochemical sensing applications,” IEEE J. Sel. Top. Quantum Electron.12, 134–142 (2006).
[CrossRef]

M. Iqbal, M. A. Gleeson, B. Sqaugh, F. Tybor, W. G. Gunn, M. Hochberg, T. Baehr-Jones, R. C. Bailey, and L. C. Gunn, “Label-free bisensor arrays based on silicon ring resonators and high-speed optical scanning instrumentation,” IEEE J. Sel. Top. Quantum Electron.16, 654–661 (2010).
[CrossRef]

Lab Chip (1)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofludic sensor for low mass detection,” Lab Chip9, 2924–2932 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13(7), 3347–3451 (2013).
[CrossRef]

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Nanoscale (1)

H. K. Hunt and A. M. Armani, “Label-free biological and chemical sensors,” Nanoscale2, 1544–1559 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol. (2)

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

L. He, S. K. Ozdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol.6, 428–432 (2011).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics4, 46–49 (2009).
[CrossRef]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature424, 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Proc. Natl. Acad. Sci. U. S. A. (2)

F. Vollmer, S. Arnold, and D. Keng, “Single virus detection from the reactive shift of a whispering gallery mode,” Proc. Natl. Acad. Sci. U. S. A.105, 20701–20704 (2008).
[CrossRef] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U. S. A.108, 5976–5979 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Scanning electron microscope (SEM) image of a representative silicon nanobeam cavity (top view). (b) Finite-difference time-domain (FDTD) simulation of the energy density distribution in the cavity on resonance, showing an optical mode volume in sub micrometer-cubed scale. (c) The resonance shift induced by single streptavidin molecules, calculated by perturbation theory and mapped to the binding position of the molecule on the nanocavity sensor. The cylinders are the side walls of the holes of nanobeam cavity. The color level indicates the magnitude of the resonance shift.

Fig. 2
Fig. 2

(a) The maximum resonance shift induced by single solid spherical particle with refractive index 1.45 (model for streptavidin molecule [20]), in a carrying solution with index=1.315. Size refers to the diameter of the spherical particle. (b) The maximum resonance shift for different refractive indices in the spherical particle model (size=5nm, solution index=1.315). (c) The maximum resonance shift for different carrying solution index (streptavidin size=5nm, streptavidin index=1.45).

Fig. 3
Fig. 3

(a) Schematic (not to scale) of the on-chip optical network sensing platform, which consists of silicon nanocavities, waveguides, polymer fiber-waveguide couplers and optical fibers. PDMS fluidic channel is integrated on top of the chip to deliver analytes to the cavities. (b) Photograph of the device. The two holes are inlet and outlet for introduction of fluids to the PDMS channel. A millimeter-size rectangular channel was permanently sealed on the silicon chip. The bright vertical lines are an array of 14 polymer fiber-waveguide couplers that are connected to 14 silicon nanocavities in the boxed region. (c) Transmission signal from the sensor in air, D2O and H2O.

Fig. 4
Fig. 4

(a, b & c) Polystyrene particles with radii 100nm, 25nm, 12.5nm were delivered to the sensor through the fluidic channel. The discrete resonance jumps indicate the detection of single nanoparticles. Inset of (a) shows the polystyrene particle diffuses in and out of the sensor. Insets of (b)&(c) zoom in the first resonance jumps in the time trace. (d, e & f) Differential shifts calculated from (a, b & c). The differential shift is defined by subtracting the resonant shifts obtained from two consecutive readouts. Their standard deviation (σ) is analyzed. Single particle events are identified from noise and are marked with dashed lines.

Fig. 5
Fig. 5

(a) The resonance shift induced by single 12.5nm-radius polystyrene particles at different binding positions (top surface, side walls, inside holes) of the nanocavity sensor, calculated by perturbation theory. The cylinders are the side walls of the holes of nanobeam cavity. The color level indicates the magnitude of the resonance shift. (b) The evanescent field decay of the optical mode away from the top surface of the nanobeam cavity. (c) The measured resonance shift induced by different size polystyrene particles (symbols) are in good agreement with theoretically predicted scaling rule Δλr3er/L where r is the radius of the particle and L is the characteristic length of the cavity field.

Fig. 6
Fig. 6

(a & c) Real-time response of blank PBS and 2pM streptavidin PBS. (b & d) Differential shifts calculated from (a) & (c). Single particle events are identified from noise and are marked with dashed lines. (e) Histogram of the resonance jump events extracted from repeated experiments.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ λ λ = 3 ( ε p ε s ) ε p + 2 ε s | E mol | 2 2 ε | E | 2 d r V mol

Metrics