Abstract

We report on a terahertz spectrometer for high-resolution molecular spectroscopy based on a quantum-cascade laser. High-frequency modulation (up to 50 MHz) of the laser driving current produces a simultaneous modulation of the frequency and amplitude of the laser output. The modulation generates sidebands, which are symmetrically positioned with respect to the laser carrier frequency. The molecular transition is probed by scanning the sidebands across it. In this way, the absorption and the dispersion caused by the molecular transition are measured. The signals are modeled by taking into account the simultaneous modulation of the frequency and amplitude of the laser emission. This allows for the determination of the strength of the frequency as well as amplitude modulation of the laser and of molecular parameters such as pressure broadening.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
    [CrossRef]
  2. C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
    [CrossRef]
  3. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A54(2), 197–236 (1998).
    [CrossRef]
  4. I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
    [CrossRef]
  5. S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
    [CrossRef]
  6. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980).
    [CrossRef] [PubMed]
  7. D. E. Cooper and R. E. Warren, “Frequency modulation spectroscopy with lead-salt diode lasers: a comparison of single-tone and two-tone techniques,” Appl. Opt.26(17), 3726–3732 (1987).
    [CrossRef] [PubMed]
  8. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
    [CrossRef]
  9. L.-G. Wang, D. A. Tate, H. Riris, and T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B6(5), 871–876 (1989).
    [CrossRef]
  10. S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
    [CrossRef]
  11. H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
    [CrossRef]
  12. C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
    [CrossRef]
  13. H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
    [CrossRef]
  14. R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
    [CrossRef]
  15. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
    [CrossRef] [PubMed]
  16. M. Gehrtz, W. Lenth, A. T. Young, and H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett.11(3), 132–134 (1986).
    [CrossRef] [PubMed]
  17. W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron.20(9), 1045–1050 (1984).
    [CrossRef]
  18. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
    [CrossRef] [PubMed]
  19. W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
    [CrossRef]

2013 (3)

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
[CrossRef]

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

2012 (1)

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

2011 (1)

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

2010 (1)

2008 (1)

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

2006 (2)

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

1998 (3)

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A54(2), 197–236 (1998).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
[CrossRef]

1992 (1)

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

1989 (1)

1987 (1)

1986 (1)

1984 (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron.20(9), 1045–1050 (1984).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

1980 (1)

Baraniuk, R. G.

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

Barbieri, S.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
[CrossRef]

Bartalini, S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Bauer, C.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Beere, H. E.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett.5(1), 15–17 (1980).
[CrossRef] [PubMed]

Blaser, S.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Borri, S.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Braunschweig, B.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Burgmeier, J.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Capasso, F.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Cho, A. Y.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Colombelli, R.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
[CrossRef]

Consolino, L.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

Cooper, D. E.

Crowe, T. W.

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

De Natale, P.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Eichholz, R.

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

Gallagher, T. F.

Gehrtz, M.

Giehler, M.

Gmachl, C.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Graf, U. U.

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

Grahn, H. T.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

Greiner-Bär, M.

Güsten, R.

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

Hartogh, P.

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

Hey, R.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

Heyminck, S.

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

Holl, G.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Hübers, H.-W.

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Hvozdara, L.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Inguscio, M.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Jacobsen, R. H.

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

Jaeger, T.

I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
[CrossRef]

Johnston, H. S.

Kaspersen, P.

I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
[CrossRef]

Lenth, W.

M. Gehrtz, W. Lenth, A. T. Young, and H. S. Johnston, “High-frequency-modulation spectroscopy with a lead-salt diode laser,” Opt. Lett.11(3), 132–134 (1986).
[CrossRef] [PubMed]

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron.20(9), 1045–1050 (1984).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

Linnerud, I.

I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
[CrossRef]

Mahler, L.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Mittelman, D. M.

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

Müller, A.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Neelamani, R.

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

Nuss, M. C.

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

Pavlov, S. G.

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Peatman, W. C. B.

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

Porterfield, D.

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

Richter, H.

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Riris, H.

Ritchie, D. A.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Rooks, M. J.

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

Schade, W.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Schrottke, L.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

Semenov, A. D.

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Sharma, A. K.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Sirtori, C.

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
[CrossRef]

Sivco, D. L.

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Stutzki, J.

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

Tate, D. A.

Tredicucci, A.

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

Vitiello, M. S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

Wang, L.-G.

Warren, R. E.

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A54(2), 197–236 (1998).
[CrossRef]

Wienold, M.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express18(10), 10177–10187 (2010).
[CrossRef] [PubMed]

Willer, U.

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

Wood, P. A. D.

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

Young, A. T.

Appl. Opt. (1)

Appl. Phys. B (5)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy,” Appl. Phys. B32(3), 145–152 (1983).
[CrossRef]

D. M. Mittelman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B67(3), 379–390 (1998).
[CrossRef]

C. Bauer, A. K. Sharma, U. Willer, J. Burgmeier, B. Braunschweig, W. Schade, S. Blaser, L. Hvozdara, A. Müller, and G. Holl, “Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives,” Appl. Phys. B92(3), 327–333 (2008).
[CrossRef]

I. Linnerud, P. Kaspersen, and T. Jaeger, “Gas monitoring in the process industry using diode laser spectroscopy,” Appl. Phys. B67(3), 297–305 (1998).
[CrossRef]

S. Borri, S. Bartalini, P. De Natale, M. Inguscio, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Frequency modulation spectroscopy by means of quantum-cascade lasers,” Appl. Phys. B85(2–3), 223–229 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

H.-W. Hübers, S. G. Pavlov, H. Richter, A. D. Semenov, L. Mahler, A. Tredicucci, H. E. Beere, and D. A. Ritchie, “High-resolution gas phase spectroscopy with a distributed feedback terahertz quantum cascade laser,” Appl. Phys. Lett.89(6), 061115 (2006).
[CrossRef]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett.99(14), 141112 (2011).
[CrossRef]

W. C. B. Peatman, P. A. D. Wood, D. Porterfield, T. W. Crowe, and M. J. Rooks, “Quarter‐micrometer GaAs Schottky barrier diode with high video responsivity at 118 μm,” Appl. Phys. Lett.61(3), 294–296 (1992).
[CrossRef]

Astron. Astrophys. (1)

S. Heyminck, U. U. Graf, R. Güsten, J. Stutzki, H.-W. Hübers, and P. Hartogh, “GREAT: the SOFIA high-frequency heterodyne instrument,” Astron. Astrophys.542, L1 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. Lenth, “High frequency heterodyne spectroscopy with current-modulated diode lasers,” IEEE J. Quantum Electron.20(9), 1045–1050 (1984).
[CrossRef]

J. Infrared Millimeter Terahertz Waves (1)

H.-W. Hübers, R. Eichholz, S. G. Pavlov, and H. Richter, “High resolution terahertz spectroscopy with quantum cascade lasers,” J. Infrared Millimeter Terahertz Waves34(5–6), 325–341 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

C. Sirtori, S. Barbieri, and R. Colombelli, “Wave engineering with THz quantum cascade lasers,” Nat. Photonics7(9), 691–701 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Sensors (1)

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors13(3), 3331–3340 (2013).
[CrossRef] [PubMed]

Spectrochim. Acta A (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochim. Acta A54(2), 197–236 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated line shapes of a molecular absorption line with a Lorentzian profile with 14 MHz FWHM at a modulation frequency of 50 MHz. (a) In-phase and (b) quadrature signal for pure FM. (c) In-phase and (d) quadrature signal for pure AM.

Fig. 2
Fig. 2

Block diagram of the spectrometer with frequency modulation spectroscopy.

Fig. 3
Fig. 3

Typical FM spectra of CH3OH at around 3.0758 THz. The spectrum was obtained by sweeping the driving current of the QCL. Frequency calibration was done by comparison with a CH3OH spectrum measured with a FTIR. The phase of the LIA was chosen in order to obtain the absorption signal as the in-phase component and the dispersion signal as the quadrature component of the LIA output.

Fig. 4
Fig. 4

Measured and fitted data for the in-phase and quadrature term of an absorption line with FM spectroscopy with a 50 MHz modulation frequency at a carrier frequency of 3.0752 THz. The features for the in-phase measurement are separated by 100 MHz.

Fig. 5
Fig. 5

(a) Experimental FM absorption line shapes for different modulation frequencies (offset for clarity). The FWHM of the transition line is 28 MHz. (b) Peak position as a function of modulation frequency.

Fig. 6
Fig. 6

FWHM of the CH3OH transition as a function of pressure in the absorption cell.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(t)= E 0 [1+Msin( ω m t+Ψ)exp[i ω 0 t+iβsin( ω m t)],
I( t ) ~  I 0 [ 1+β( δ 1 δ 1 )cos( ω m t )+M( 22 δ 0 δ 1 δ 1 )sin( ω m t+Ψ )+ M( Φ 1 Φ 1 )cos( ω m t+Ψ )+β( Φ 1 + Φ 1 +2 Φ 0 )sin( ω m t) ],

Metrics