Abstract

Upright standing gold monopole nanoantennas are fabricated by irradiation of thin gold films with single pulses of fs-laser radiation. The resulting antennas exhibit extinction resonances in the mid infrared spectral rage for p-polarized light under grazing incidence. Due to the free charge carriers in the surrounding gold film of the antenna, the resonance condition of the thin-wire monopole antenna can be explained by introducing image charges yielding an observable resonance wavelength of four times the antenna length. The antenna length is controlled coarsely by the focusing numerical aperture and fine by the pulse energy of the laser pulse producing the structure. An additional ultrafine tuning of the resonance wavelength with a sub-10 nm resolution is realized by an additional coating process subsequent to the laser structuring.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
    [CrossRef] [PubMed]
  2. K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
    [CrossRef]
  3. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  4. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
    [CrossRef] [PubMed]
  5. H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
    [CrossRef] [PubMed]
  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  7. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
    [CrossRef] [PubMed]
  8. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
    [CrossRef] [PubMed]
  9. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
    [CrossRef] [PubMed]
  10. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  11. J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
    [CrossRef]
  12. M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
    [CrossRef] [PubMed]
  13. W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express21(7), 8166–8176 (2013).
    [CrossRef] [PubMed]
  14. F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
    [CrossRef] [PubMed]
  15. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
    [CrossRef]
  16. M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
    [CrossRef]
  17. J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
    [CrossRef] [PubMed]
  18. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
    [CrossRef]
  19. B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
    [CrossRef] [PubMed]
  20. A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
    [CrossRef]
  21. A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
    [CrossRef] [PubMed]
  22. B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
    [CrossRef]
  23. D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
    [CrossRef]
  24. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012).
    [CrossRef] [PubMed]
  25. D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
    [CrossRef]
  26. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
    [CrossRef]
  27. J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
    [CrossRef]
  28. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
    [CrossRef]

2013 (4)

W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express21(7), 8166–8176 (2013).
[CrossRef] [PubMed]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

2012 (4)

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

2011 (4)

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

2010 (1)

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

2009 (5)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

2007 (3)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

2006 (2)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

2005 (2)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

2004 (1)

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Adato, R.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Aizpurua, J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Altoe, M. V. P.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Altug, H.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Amenabar, I.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Atkinson, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Bao, W.

Bokor, J.

Büchi, L.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Busnaina, A.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

Cabrini, S.

W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express21(7), 8166–8176 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Casse, B. D. F.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Cetin, A. E.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

Chichkov, B. N.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Chuvilin, A.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Crozier, K. B.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

David, C.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Eisler, H.-J.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Ekinci, Y.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Erramilli, S.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Evans, P.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Fahsold, G.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Farahani, J. N.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Felderer, K.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Feurer, T.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Fleischer, M.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Flueckiger, P.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Frey, H. G.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

Garcia, M. E.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

Garcia-Etxarri, A.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Gasser, P.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Giannini, R.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Gorelick, S.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Guckenberger, R.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Gultepe, E.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Hartung, A.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

Hauer, B.

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
[CrossRef]

Hecht, B.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Hendren, W.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Hillenbrand, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Hoffmann, J. M.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
[CrossRef]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Huang, Y. J.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Huber, A. J.

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Hulverscheidt, C.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

Huth, F.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Ivanov, D.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

Ivanov, D. S.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

Kabashin, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Kern, D. P.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Kern, K.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

Kino, G.

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

Koch, J.

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Kolb, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Krutokhvostov, R.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Kuznetsov, A. I.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Lederer, F.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

Lipp, V. P.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

Löffler, J. F.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Lopatin, S.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

Lovrincic, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Lu, W. T.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Martin, O. J.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Maß, T. W. W.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

Menon, L.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Merbold, H.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Neubrech, F.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Neumann, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Overmeyer, L.

Päivänranta, B.

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Pastkovsky, S.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pavius, M.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Pertsch, T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Podolskiy, V. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Pollard, R.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Pucci, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Quate, C.

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Reininghaus, M.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

Rethfeld, B.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

Richter, J.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Salmeron, M. B.

Schnell, M.

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Schuck, P. J.

W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express21(7), 8166–8176 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

Schulz, W.

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

Schwartzberg, A. M.

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Somu, S.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

Sridhar, S.

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

Staffaroni, M.

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Taubner, T.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
[CrossRef]

Toimil-Molares, M. E.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express20(22), 24864–24872 (2012).
[CrossRef] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Weber-Bargioni, A.

W. Bao, M. Staffaroni, J. Bokor, M. B. Salmeron, E. Yablonovitch, S. Cabrini, A. Weber-Bargioni, and P. J. Schuck, “Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips,” Opt. Express21(7), 8166–8176 (2013).
[CrossRef] [PubMed]

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

Weitz, R. T.

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

Witt, S.

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

Wortmann, D.

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

Wurtz, G. A.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Yablonovitch, E.

Yanik, A. A.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Yilmaz, C.

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

Yin, X.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Zayats, A. V.

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

ACS Nano (2)

M. Fleischer, A. Weber-Bargioni, M. V. P. Altoe, A. M. Schwartzberg, P. J. Schuck, S. Cabrini, and D. P. Kern, “Gold nanocone near-field scanning optical microscopy probes,” ACS Nano5(4), 2570–2579 (2011).
[CrossRef] [PubMed]

B. Päivänranta, H. Merbold, R. Giannini, L. Büchi, S. Gorelick, C. David, J. F. Löffler, T. Feurer, and Y. Ekinci, “High aspect ratio plasmonic nanostructures for sensing applications,” ACS Nano5(8), 6374–6382 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

A. E. Cetin, A. A. Yanik, C. Yilmaz, S. Somu, A. Busnaina, and H. Altug, “Monopole antenna arrays for optical trapping, spectroscopy, and sensing,” Appl. Phys. Lett.98(11), 111110 (2011).
[CrossRef]

B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett.96(2), 023114 (2010).
[CrossRef]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012).
[CrossRef]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett.89(25), 253104 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

D. S. Ivanov, A. I. Kuznetsov, V. P. Lipp, B. Rethfeld, B. N. Chichkov, M. E. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys., A Mater. Sci. Process.111(3), 675–687 (2013).
[CrossRef]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process.106(3), 479–487 (2012).
[CrossRef]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. Kino, and C. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys.124(6), 061101 (2006).
[CrossRef] [PubMed]

J. Laser Appl. (1)

D. Wortmann, J. Koch, M. Reininghaus, C. Unger, C. Hulverscheidt, D. Ivanov, and B. N. Chichkov, “Experimental and theoretical investigation on fs-laser-induced nanostructure formation on thin gold films,” J. Laser Appl.24(4), 042017 (2012).
[CrossRef]

J. Phys. Chem. C (1)

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C117(21), 11311–11316 (2013).
[CrossRef]

Nano Lett. (3)

J. Dorfmüller, R. Vogelgesang, R. T. Weitz, C. Rockstuhl, C. Etrich, T. Pertsch, F. Lederer, and K. Kern, “Fabry-Pérot resonances in one-dimensional plasmonic nanostructures,” Nano Lett.9(6), 2372–2377 (2009).
[CrossRef] [PubMed]

F. Huth, A. Chuvilin, M. Schnell, I. Amenabar, R. Krutokhvostov, S. Lopatin, and R. Hillenbrand, “Resonant antenna probes for tip-enhanced infrared near-field microscopy,” Nano Lett.13(3), 1065–1072 (2013).
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “Lambda/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett.7(1), 28–33 (2007).
[CrossRef] [PubMed]

Nanotechnology (1)

J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Flueckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology18(12), 125506 (2007).
[CrossRef]

Nat. Mater. (1)

A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater.8(11), 867–871 (2009).
[CrossRef] [PubMed]

Nat. Photonics (4)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007).
[CrossRef]

M. Schnell, A. Garcia-Etxarri, A. J. Huber, K. B. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Opt. Express (2)

Phys. Rev. Lett. (3)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett.94(1), 017402 (2005).
[CrossRef] [PubMed]

H. G. Frey, S. Witt, K. Felderer, and R. Guckenberger, “High-resolution imaging of single fluorescent molecules with the optical near-field of a metal tip,” Phys. Rev. Lett.93(20), 200801 (2004).
[CrossRef] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009).
[CrossRef] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308(5728), 1607–1609 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The large area SEM image shows the reproducible generation of approximately 40 nanoantennas generated with single pulses of fs-laser radiation at pulse energies of 21.2 nJ, focused onto the surface of a 50 nm thick gold thin film with a NA of 0.25. The inset shows a representative upright standing nanoantenna.

Fig. 2
Fig. 2

(a) SEM image of a spiky nanoantenna. (b) Schematic of a nanoantenna defining the length of the antenna. (c) Induced charge distribution of a nanoantenna on a conductive gold thin film as a result of an incident electromagnetic wave. (d) The charge distribution shown in (c) can be described by introducing a mirror plane and the corresponding image charge.

Fig. 3
Fig. 3

FTIR spectra of two antenna fields of 120 µm x 120 µm in size including approximately 300 nanoantennas. A coarse tuning of the characteristic resonance wavelength is achieved by varying the NA of the focusing optics. SEM images of representative nanoantennas validate the correlation between resonance wavelength λ0 and the geometrical length l of the nanoantennas by a factor of four. (blue curve: NA = 0.4, Ep = 12.3 nJ, λ0 = 2.46 µm, l = 0.42 µm; red curve: NA = 0.15, Ep = 57 nJ, λ0 = 6.51 µm, l = 1.61 µm)

Fig. 4
Fig. 4

(a) FTIR spectra of a gold thin film covered fs-laser radiation induced nanoantennas. The shift in the central resonance wavelength λ0 is achieved by systematic variation of the pulse energy applied to generate the characteristic length of the corresponding nanoantenna. SEM images illustrate the possibility of tuning the length of the nanoantenna by varying the pulse energy. The presented spectra originate of six fields of nanoantennas generated at pulse energies of 12.3 nJ down to 11 nJ in steps of 0.3 nJ. (blue curve: NA = 0.4, Ep = 12.3 nJ, λ0 = 2.46 µm, l = 0.42 µm; red curve: NA = 0.4, Ep = 11 nJ, λ0 = 3.33 µm, l = 0.73 µm) (b) A comparison of the resonance wavelength observed for nanoantennas generated with three different numerical apertures with the length of the nanoantennas extracted from the SEM images yields good agreement of the assumed λ0/4-model (red, solid line).

Fig. 5
Fig. 5

In post treatment steps additional gold thin films of different thicknesses are thermally evaporated covering the laser generated nanoantennas. The corresponding shift of the observed resonance wavelength in FTIR measurements is shown as a function of the additional gold film thickness. The slope of 3.9 of the assumed linear correlation of the additional gold thin film thickness and the corresponding shift of the resonance wavelength suggests a dependency according to the predicted λ0/4-model.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l= λ 0 4 .

Metrics