Abstract

We have studied the excitation of higher-order modes and their role in supercontinuum generation in a three-hole silica suspended-core fiber, both experimentally and numerically. We find that pump coupling optimized to highest transmission can yield substantial excitation of higher order modes. With up to about 40% of the pump power coupled to higher order modes, we have studied supercontinuum generation in this fiber. In agreement with experiments, simulation results based on the multimode generalized nonlinear Schrödinger equation confirm that the spectral width is determined by spectral broadening in the fundamental mode, whereas the numerical analysis reveals that intermodal nonlinear interactions are strongly suppressed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, USA, 2010).
    [CrossRef]
  2. P. Russell, “Photonic crystal fibers,” Science (New York, N.Y.) 299, 358–362 (2003).
    [CrossRef] [PubMed]
  3. J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003).
    [CrossRef] [PubMed]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25, 25–27 (2000).
    [CrossRef]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett.25, 796–798 (2000).
    [CrossRef]
  6. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express11, 910–918 (2003).
    [CrossRef] [PubMed]
  7. S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, “Mode-controlled colors from microstructure fibers,” Opt. Express12, 730–735 (2004).
    [CrossRef] [PubMed]
  8. C. Lesvigne, V. Couderc, A. Tonello, P. Leproux, A. Barthélémy, S. Lacroix, F. Druon, P. Blandin, M. Hanna, and P. Georges, “Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber,” Opt. Lett.32, 2173–2175 (2007).
    [CrossRef] [PubMed]
  9. R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16, 2147–2152 (2008).
    [CrossRef] [PubMed]
  10. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008).
    [CrossRef]
  11. F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009).
    [CrossRef] [PubMed]
  12. J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
    [CrossRef]
  13. B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber,” Opt. Express21, 834–839 (2013).
    [CrossRef] [PubMed]
  14. J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013).
    [CrossRef] [PubMed]
  15. R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express21, 14388–14398 (2013).
    [CrossRef] [PubMed]
  16. Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express21, 17786–17799 (2013).
    [CrossRef] [PubMed]
  17. Y. Chen, W. J. Wadsworth, and T. A. Birks, “Ultraviolet four-wave mixing in the LP02 fiber mode,” Opt. Lett.38, 3747–3750 (2013).
    [CrossRef] [PubMed]
  18. K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
    [CrossRef]
  19. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16, 8427–8432 (2008).
    [CrossRef] [PubMed]
  20. T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
    [CrossRef]
  21. O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
    [CrossRef]
  22. C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett.38, 1881–1883 (2013).
    [CrossRef] [PubMed]
  23. L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express16, 16423–16430 (2008).
    [CrossRef] [PubMed]
  24. L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16, 19629–19642 (2008).
    [CrossRef] [PubMed]
  25. A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19, 7742–7749 (2011).
    [CrossRef] [PubMed]
  26. A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express19, 12275–12283 (2011).
    [CrossRef] [PubMed]
  27. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20, 27083–27093 (2012).
    [CrossRef] [PubMed]
  28. W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21, 9573–9583 (2013).
    [CrossRef] [PubMed]
  29. M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

2013 (7)

B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber,” Opt. Express21, 834–839 (2013).
[CrossRef] [PubMed]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21, 9573–9583 (2013).
[CrossRef] [PubMed]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013).
[CrossRef] [PubMed]

C. Wang, W. Jin, J. Ma, Y. Wang, H. L. Ho, and X. Shi, “Suspended core photonic microcells for sensing and device applications,” Opt. Lett.38, 1881–1883 (2013).
[CrossRef] [PubMed]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express21, 14388–14398 (2013).
[CrossRef] [PubMed]

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express21, 17786–17799 (2013).
[CrossRef] [PubMed]

Y. Chen, W. J. Wadsworth, and T. A. Birks, “Ultraviolet four-wave mixing in the LP02 fiber mode,” Opt. Lett.38, 3747–3750 (2013).
[CrossRef] [PubMed]

2012 (3)

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20, 27083–27093 (2012).
[CrossRef] [PubMed]

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

2011 (2)

2010 (2)

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

2009 (1)

2008 (5)

2007 (1)

2004 (1)

2003 (2)

2002 (1)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

2000 (2)

Afshar V, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Amraoui, M. E.

Bartelt, H.

Barthélémy, A.

Birks, T. A.

Blandin, P.

Bony, P.-Y.

Brambilla, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Chen, Y.

Chen, Z.

Cheng, T.

Cherif, R.

Couderc, V.

Degiorgio, V.

Deng, D.

Désévédavy, F.

Dong, L.

Druon, F.

Duan, Z.

Dupont, S.

Ebendorff-Heidepriem, H.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Efimov, A.

Fatome, J.

Feng, X.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Ferreira, M. S.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Frampton, K.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

François, A.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Frazão, O.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Fu, L.

Gadret, G.

Gao, W.

Gawlik, W.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Georges, P.

Grabka, M.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Hanna, M.

Hartung, A.

Hautakorpi, M.

Heidt, A. M.

Heng, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Hewak, D. W.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Ho, H. L.

Holdsworth, J.

Horak, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008).
[CrossRef]

Ibsen, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Jin, W.

Johansen, M.

Jules, J.-C.

Kaivola, M.

Kawashima, H.

Keiding, S. R.

Khakimov, R.

Kiang, K. M.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Kibler, B.

King, B.

Knight, J. C.

Kohoutek, T.

Konorov, S. O.

Lacroix, S.

Legge, S.

Leproux, P.

Lesvigne, C.

Liao, M.

Lobo Ribeiro, A. B.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Loh, W. H.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Ludvigsen, H.

Ma, J.

Mattinen, M.

Mergo, P.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Messaddeq, Y.

Monro, T. M.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Moore, R.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Moselund, P. M.

Mouawad, O.

Novotny, S.

Ohishi, Y.

Omenetto, F. G.

Petropoulos, P.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Petrovich, M.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Poletti, F.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B25, 1645–1654 (2008).
[CrossRef]

Ponzo, G.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Price, J. H. V.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Pustelny, S.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Ramsay, J.

Ranka, J. K.

Richardson, D. J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Rishøj, L.

Rottwitt, K.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science (New York, N.Y.) 299, 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. St. J.

Rutt, H. N.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

Santos, J. L.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Savelii, I.

Schartner, E. P.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Serebryannikov, E. E.

Shavrin, I.

Shi, J.

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Shi, X.

Silva, R. M.

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Skorupski, K.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Smektala, F.

Stentz, A. J.

Suzuki, T.

Tarasevitch, A. P.

Tartara, L.

Taylor, A. J.

Thomas, B. K.

Tonello, A.

Tucknott, J.

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

von der Linde, D.

Wadsworth, W. J.

Wajnchold, B.

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Wang, C.

Wang, Y.

Warren-Smith, S.

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Windeler, R. S.

Zghal, M.

Zheltikov, A. M.

Zhou, P.

Zwan, B.

Acta Phys. Pol. A (1)

M. Grabka, B. Wajnchold, S. Pustelny, W. Gawlik, K. Skorupski, and P. Mergo, “Experimental and theoretical study of light propagation in suspended-core optical fiber,” Acta Phys. Pol. A118, 1127–1132 (2010).

Electron. Lett. (1)

K. M. Kiang, K. Frampton, T. M. Monro, R. Moore, J. Tucknott, D. W. Hewak, D. J. Richardson, and H. N. Rutt, “Extruded singlemode non-silica glass holey optical fibres,” Electron. Lett.38, 546–547 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature424, 847–851 (2003).
[CrossRef] [PubMed]

Opt. Express (15)

L. Dong, B. K. Thomas, and L. Fu, “Highly nonlinear silica suspended core fibers,” Opt. Express16, 16423–16430 (2008).
[CrossRef] [PubMed]

L. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express16, 19629–19642 (2008).
[CrossRef] [PubMed]

F. Poletti and P. Horak, “Dynamics of femtosecond supercontinuum generation in multimode fibers,” Opt. Express17, 6134–6147 (2009).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation,” Opt. Express19, 7742–7749 (2011).
[CrossRef] [PubMed]

A. Hartung, A. M. Heidt, and H. Bartelt, “Pulse-preserving broadband visible supercontinuum generation in all-normal dispersion tapered suspended-core optical fibers,” Opt. Express19, 12275–12283 (2011).
[CrossRef] [PubMed]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.-C. Jules, P.-Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express20, 27083–27093 (2012).
[CrossRef] [PubMed]

B. Zwan, S. Legge, J. Holdsworth, and B. King, “Spatio-spectral analysis of supercontinuum generation in higher order electromagnetic modes of photonic crystal fiber,” Opt. Express21, 834–839 (2013).
[CrossRef] [PubMed]

W. Gao, M. E. Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21, 9573–9583 (2013).
[CrossRef] [PubMed]

J. Ramsay, S. Dupont, M. Johansen, L. Rishøj, K. Rottwitt, P. M. Moselund, and S. R. Keiding, “Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers,” Opt. Express21, 10764–10771 (2013).
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express11, 910–918 (2003).
[CrossRef] [PubMed]

S. O. Konorov, E. E. Serebryannikov, A. M. Zheltikov, P. Zhou, A. P. Tarasevitch, and D. von der Linde, “Mode-controlled colors from microstructure fibers,” Opt. Express12, 730–735 (2004).
[CrossRef] [PubMed]

R. Cherif, M. Zghal, L. Tartara, and V. Degiorgio, “Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber,” Opt. Express16, 2147–2152 (2008).
[CrossRef] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express16, 8427–8432 (2008).
[CrossRef] [PubMed]

R. Khakimov, I. Shavrin, S. Novotny, M. Kaivola, and H. Ludvigsen, “Numerical solver for supercontinuum generation in multimode optical fibers,” Opt. Express21, 14388–14398 (2013).
[CrossRef] [PubMed]

Y. Chen, Z. Chen, W. J. Wadsworth, and T. A. Birks, “Nonlinear optics in the LP02 higher-order mode of a fiber,” Opt. Express21, 17786–17799 (2013).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

J. H. V. Price, X. Feng, A. M. Heidt, G. Brambilla, P. Horak, F. Poletti, G. Ponzo, P. Petropoulos, M. Petrovich, J. Shi, M. Ibsen, W. H. Loh, H. N. Rutt, and D. J. Richardson, “Supercontinuum generation in non-silica fibers,” Opt. Fiber Technol.18, 327–344 (2012).
[CrossRef]

Opt. Lett. (5)

Optical Fiber Technology (1)

T. M. Monro, S. Warren-Smith, E. P. Schartner, A. François, S. Heng, H. Ebendorff-Heidepriem, and S. Afshar V, “Sensing with suspended-core optical fibers,” Optical Fiber Technology16, 343–356 (2010).
[CrossRef]

Photonic Sens. (1)

O. Frazão, R. M. Silva, M. S. Ferreira, J. L. Santos, and A. B. Lobo Ribeiro, “Suspended-core fibers for sensing applications,” Photonic Sens.2, 118–126 (2012).
[CrossRef]

Other (2)

J. M. Dudley and J. R. Taylor, eds., Supercontinuum Generation in Optical Fibers (Cambridge University Press, New York, USA, 2010).
[CrossRef]

P. Russell, “Photonic crystal fibers,” Science (New York, N.Y.) 299, 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1
Figure 1

(a) SEM image of the fused silica three-hole SCF. (b) Calculated GVD parameter D and (c) mode-intensity distributions of the six lowest-order modes. Modes M1 and M2 as well as M4 and M5 form degenerate pairs.

Figure 2
Figure 2

Spectra measured at pump wavelengths (a) 742 nm, (b) 780 nm and (c) 800 nm, each for three different peak pump powers as indicated. All spectra shown by red and black lines are vertically offset by −5 dB and −10 dB, respectively, to improve readability.

Figure 3
Figure 3

Measured supercontinuum spectrum generated by pump pulses with λ = 780 nm and P = 10.6 kW together with near-field images recorded at the fiber output for different wavelengths.

Figure 4
Figure 4

The simulated spectrum (gray line and black line (smoothed)) shown in (a) together with the measured spectrum (red line) is obtained from the coherent sum of the modal contributions presented in (b). The simulation was performed for a single pump pulse (λ = 780 nm; P = 10.6 kW) coupled entirely into the fundamental mode.

Figure 5
Figure 5

Pump coupling calculated for an ideal, linearly polarized Gaussian beam with 1/e - waist radius of (a) 1000 nm and (b) 500 nm. Shown are the coupling maps at a polarization angle ϕ = 90° together with the polarization dependence of the mode excitation at maximum coupling (marked by white dot in corresponding coupling map). The white dashed circles on the coupling maps indicate the beam waist circumference.

Figure 6
Figure 6

Pump coupling calculated for an ideal, linearly polarized Gaussian beam with 1/e - waist radius of 648 nm. (a) Coupling maps at three polarization angles. (b) Mode excitation at maximum coupling (marked by white dot in coupling maps) as function of the polarization angle.

Figure 7
Figure 7

Single-shot MM-GNLSE simulation results assuming a pump laser beam with λ = 780 nm, P = 10.6 kW and ϕ = 90° which initially excites the modes according to Table 1. In (a) the simulated supercontinuum (gray line and black line (smoothed)) is compared to the measured spectrum (in red). The modal spectral contributions are presented separately in (b) and (c).

Tables (1)

Tables Icon

Table 1 Calculated modal power fractions for maximum coupling and a polarization angle ϕ = 90° (%).

Metrics