Abstract

We present a theoretical investigation of an integrated nonlinear light source for coherent anti-Stokes Raman scattering (CARS) based on silicon nitride waveguides. Wavelength tunable and temporally synchronized signal and idler pulses are obtained by using seeded four-wave mixing. We find that the calculated input pump power needed for nonlinear wavelength generation is more than one order of magnitude lower than in previously reported approaches based on optical fibers. The tuning range of the wavelength conversion was calculated to be 1418 nm to 1518 nm (idler) and 788 nm to 857 nm (signal), which corresponds to a coverage of vibrational transitions from 2350 cm−1 to 2810 cm−1. A maximum conversion efficiency of 19.1% at a peak pump power of 300 W is predicted.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).
  2. A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
    [CrossRef]
  3. G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
    [CrossRef]
  4. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
    [CrossRef]
  5. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.29(23), 2701–2703 (2004).
    [CrossRef] [PubMed]
  6. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
    [CrossRef]
  7. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
    [CrossRef]
  8. E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, and J. Ye, “High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers,” Opt. Lett.27(13), 1168–1170 (2002).
  9. E. S. Lamb, S. Lefrancois, M. Ji, W. J. Wadsworth, X. S. Xie, and F. W. Wise, “Fiber optical parametric oscillator for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.38(20), 4154–4157 (2013).
    [CrossRef] [PubMed]
  10. S. Lefrancois, D. Fu, G. R. Holtom, L. Kong, W. J. Wadsworth, P. Schneider, R. Herda, A. Zach, X. S. Xie, and F. W. Wise, “Fiber four-wave mixing source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett.37(10), 1652–1654 (2012).
    [CrossRef] [PubMed]
  11. M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Allfiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4893 (2012).
    [CrossRef] [PubMed]
  12. T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012).
    [CrossRef] [PubMed]
  13. A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
    [CrossRef]
  14. R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
    [CrossRef]
  15. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
    [CrossRef] [PubMed]
  16. C. Camp, S. Yegnanarayanan, A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express17(25), 22879–22889 (2009).
    [CrossRef]
  17. M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
    [CrossRef] [PubMed]
  18. F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).
  19. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
    [CrossRef]
  20. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
    [CrossRef]
  21. I. Agha, M. Davanço, B. Thurston, and K. Srinivasan, “Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiNx waveguides,” Opt. Lett.37(14), 2997–2999 (2012).
    [CrossRef] [PubMed]
  22. K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express21(19), 22829–22833 (2013).
    [CrossRef] [PubMed]
  23. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguide,” Opt. Express16(17), 12987–12994 (2008).
    [CrossRef] [PubMed]
  24. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).
  25. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  26. G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  27. M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express17(18), 15827–15841 (2009).
    [CrossRef] [PubMed]
  28. G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
    [CrossRef]
  29. L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
    [CrossRef]

2013 (4)

2012 (4)

2011 (1)

2010 (1)

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

2009 (3)

2008 (6)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
[CrossRef]

A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
[CrossRef]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguide,” Opt. Express16(17), 12987–12994 (2008).
[CrossRef] [PubMed]

2007 (1)

G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
[CrossRef]

2006 (2)

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

2005 (2)

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

2004 (1)

2002 (1)

1981 (1)

R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).

Adibi, A.

Agha, I.

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Alic, N.

Bar, I.

A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
[CrossRef]

Barton, J. S.

Baumgartl, M.

Bauters, J. F.

Beadie, G.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Besselink, G. A. J.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Blumenthal, D. J.

Boller, K.-J.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
[CrossRef]

Bowers, J. E.

Brauckmann, N.

Camp, C.

Chemnitz, M.

Cheng, J.-X.

Cheng, X.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
[CrossRef]

Choi, D.-Y.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Cicerone, M. T.

Coen, S.

G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
[CrossRef]

Dai, D.

Davanço, M.

Dietzek, B.

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Dudley, J .M.

G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
[CrossRef]

Dutt, A.

Eckbreth, A. C.

R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).

Eftekhar, A.

Eggleton, B. J.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

Fainman, Y.

Fallnich, C.

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Foster, M.

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Foster, M. A.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Fu, D.

Gaeta, A. L.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Genty, G.

G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gottschall, T.

Grevea, J.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Gross, P.

Hall, R. J.

R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).

Heck, M. J. R.

Heideman, R. G.

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Herda, R.

Holtom, G. R.

Ikeda, K.

Jauregui, C.

Ji, M.

John, D.

Johnson, A. R.

Jones, D. J.

Jurna, M.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

Kanger, J. S.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Kee, T. W.

Klein, E. J.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Kong, L.

Korterik, J. P.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

Kues, M.

Lamb, E. S.

Lambeck, P. V.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Lamont, M. R. E.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
[CrossRef]

Lee, C. J.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Lefrancois, S.

Leinse, A.

Levy, J. S.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Limpert, J.

Lipson, M.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express21(19), 22829–22833 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Luan, F.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Luke, K.

Luther-Davies, B.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Madden, S.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Meyer, T.

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Offerhaus, H. L.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

Okawachi, Y.

Oldenbeuving, R.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Opatrny, T.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Otto, C.

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

Pelusi, M. D.

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

Poitras, C. B.

Popp, J.

Portnov, A.

A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
[CrossRef]

Potma, E. O.

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Reintjes, J.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
[CrossRef]

Rosenwaks, S.

A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
[CrossRef]

Rostovtsev, Y. V.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Rothhardt, J.

Sagnier, A.

Saha, K.

Salem, R.

Saperstein, R. E.

Sariyanni, Z. E.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Schmidt, B. S.

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Schneider, P.

Scully, M. O.

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

Sharping, J. E.

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Shim, B.

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Song, H.

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Sridhar, H.

Srinivasan, K.

Sze, S. M.

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

Thurston, B.

Tien, M.-C.

Tünnermann, A.

Turner, A. C.

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Wadsworth, W. J.

Walbaum, T.

Wijn, R.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Wise, F. W.

Xiao, L.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
[CrossRef]

Xie, X. S.

Xu, J.

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
[CrossRef]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

Ye, J.

Yegnanarayanan, S.

Ymeti, A.

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

Zach, A.

Annu. Rev. Anal. Chem. (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu. Rev. Anal. Chem. (Palo Alto Calif)1(1), 883–909 (2008).
[CrossRef]

Appl. Phys. Lett. (3)

A. Portnov, S. Rosenwaks, and I. Bar, “Detection of particles of explosives via backward coherent anti-Stokes Raman spectroscopy,” Appl. Phys. Lett.93, 041115 (2008).
[CrossRef]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett.93, 201103 (2008).
[CrossRef]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett.89, 251116 (2006).
[CrossRef]

Biosens. Bioelectron. (1)

A. Ymeti, J. S. Kanger, J. Grevea, G. A. J. Besselink, P. V. Lambeck, R. Wijn, and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosens. Bioelectron.20, 1417–1421 (2005).
[CrossRef]

J. Opt. Soc. Am. B. (1)

G. Genty, S. Coen, and J .M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B.24, 1771–1785 (2007).
[CrossRef]

Laser Phys. Lett. (1)

R. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10, 015804 (2013).
[CrossRef]

Nat. Photonics (2)

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics1(12), 737–740 (2008).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Nature (1)

M. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, and A. L. Gaeta, “Broad-band optical parametric gain on a silicon photonic chip,” Nature441(7096), 960–963 (2006).
[CrossRef] [PubMed]

Opt. Commun. (2)

G. Beadie, Z. E. Sariyanni, Y. V. Rostovtsev, T. Opatrny, J. Reintjes, and M. O. Scully, “Towards a FAST CARS anthrax detector: coherence preparation using simultaneous femtosecond laser pulses,” Opt. Commun.244, 423–430 (2005).
[CrossRef]

L. Xiao, X. Cheng, and J. Xu, “High-power Nd:YAG planar waveguide laser with YAG and Al2O3 claddings,” Opt. Commun.281, 3781–3785 (2008).
[CrossRef]

Opt. Eng. (1)

R. J. Hall and A. C. Eckbreth, “Combustion diagnosis by coherent anti-Stokes Raman spectroscopy (CARS),” Opt. Eng.20(4), 494–500 (1981).

Opt. Express (9)

M. Kues, N. Brauckmann, T. Walbaum, P. Gross, and C. Fallnich, “Nonlinear dynamics of femtosecond super-continuum generation with feedback,” Opt. Express17(18), 15827–15841 (2009).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

K. Luke, A. Dutt, C. B. Poitras, and M. Lipson, “Overcoming Si3N4 film stress limitations for high quality factor ring resonators,” Opt. Express21(19), 22829–22833 (2013).
[CrossRef] [PubMed]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguide,” Opt. Express16(17), 12987–12994 (2008).
[CrossRef] [PubMed]

F. Luan, M. D. Pelusi, M. R. E. Lamont, D.-Y. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Dispersion engineered As2S3 planar waveguides for broadband four-wave mixing based wavelength conversion of 40 Gb/s signals,” Opt. Express17(5), 35414–35420 (2009).

M. Baumgartl, M. Chemnitz, C. Jauregui, T. Meyer, B. Dietzek, J. Popp, J. Limpert, and A. Tünnermann, “Allfiber laser source for CARS microscopy based on fiber optical parametric frequency conversion,” Opt. Express20(4), 4484–4893 (2012).
[CrossRef] [PubMed]

T. Gottschall, M. Baumgartl, A. Sagnier, J. Rothhardt, C. Jauregui, J. Limpert, and A. Tünnermann, “Fiber-based source for multiplex-CARS microscopy based on degenerate four-wave mixing,” Opt. Express20(11), 12004–12013 (2012).
[CrossRef] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. E. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

C. Camp, S. Yegnanarayanan, A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express17(25), 22879–22889 (2009).
[CrossRef]

Opt. Lett. (5)

Other (2)

S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, 1981).

G.P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Analytically calculated FWM small-signal gain spectra of silicon nitride waveguides with a height of 700 nm and widths from 1610 nm to 1650 nm for a pump power of 300 W. (b) Superimposed spectra of cw seeded FWM after 2 cm of propagation for a pump pulse with 300 W peak power, which was numerically calculated using the nonlinear Schrödinger equation. Shown in red is a single spectrum, obtained with a seed wavelength (s) of 828 nm, and resulting in an idler wavelength (i) of 1488 nm, and pumped (p) at 1064 nm. The spectra for a range of seed wavelengths from 714 nm to 1063 nm in 4 THz steps are shown in grey.

Fig. 2
Fig. 2

(a) Resulting peak powers of pump, signal and idler pulse against the frequency shift from the pump frequency. These results were calculated for a waveguide with a width of 1630 nm, a height of 700 nm, and length of 2 cm. The peak pump power was set to be 300 W. (b) Calculated conversion efficiencies against propagation for peak pump powers from 150 W to 350 W seeded at a wavelength of 828 nm.

Fig. 3
Fig. 3

Peak power of the idler pulses against the frequency shift for various waveguide widths. The waveguide height is 700 nm, and the interaction length is 2 cm, while the pump peak power is 300 W.

Metrics