Abstract

We proposed, designed and fabricated a high transparency of metasurface-based polarization controller at microwave frequencies, which consists of orthogonal two pairs of cut wires. The high transmission and the strong dispersion properties governed by electromagnetically induced transparency-like (EIT-like) effects for both incident polarizations make our device efficiently manipulating the polarization of EM waves. In particular, the proposed polarization device is ultrathin (~0.017λ), as opposed to bulky polarization devices. Microwave experiments are performed to successfully demonstrate our ideas, and measured results are in reasonable agreement with numerical simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
    [CrossRef]
  2. F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
    [CrossRef]
  3. E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
    [CrossRef]
  4. J. B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett.31(2), 265–267 (2006).
    [CrossRef] [PubMed]
  5. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
    [CrossRef]
  6. W. J. Sun, Q. O. He, J. M. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
    [CrossRef] [PubMed]
  7. M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
    [CrossRef]
  8. T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
    [CrossRef]
  9. L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).
  10. Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett.102(1), 011129 (2013).
    [CrossRef]
  11. J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  12. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
    [CrossRef]
  13. J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
    [CrossRef]
  14. A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
    [CrossRef]
  15. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
    [CrossRef] [PubMed]
  16. Y. Q. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
    [CrossRef]
  17. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
    [CrossRef]
  18. I. Sohail, Y. Rangay, K. P. Esselle, and S. G. Hay, “A linear to circular polarization converter based on Jerusalem-cross frequency selective surface,” in EuCAP (2013), pp. 2141–2143.
  19. M. Moallem and K. Sarabandi, “A single-layer metamaterial-based polarizer and bandpass frequency selective surface with an adjacent transmission zero,” in AP-S (2011), pp. 2649–2652.
    [CrossRef]
  20. Y. Ranga, D. Thalakotuna, K. P. Esselle, S. G. Hay, L. Matekovits, and M. Orefice, “A transmission polarizer based on width-modulated lines and slots,” in IWAT (2013), pp. 299–302.
    [CrossRef]
  21. X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
    [CrossRef]
  22. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
    [CrossRef] [PubMed]
  23. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
    [CrossRef] [PubMed]
  24. Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
    [CrossRef]
  25. L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys.45(44), 445105 (2012).
    [CrossRef]
  26. P. Ding, C. Z. Fan, Y. G. Cheng, E. J. Liang, and Q. Z. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt.51(12), 1879–1885 (2012).
    [CrossRef] [PubMed]
  27. Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express18(17), 18229–18234 (2010).
    [CrossRef] [PubMed]
  28. X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express19(22), 21652–21657 (2011).
    [CrossRef] [PubMed]
  29. N. Niakan, M. Askari, and A. Zakery, “High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials,” J. Opt. Soc. Am. B29(9), 2329–2333 (2012).
    [CrossRef]
  30. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
    [CrossRef] [PubMed]
  31. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
    [CrossRef] [PubMed]
  32. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
    [CrossRef] [PubMed]
  33. P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express21(1), 1270–1280 (2013).
    [CrossRef] [PubMed]
  34. R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
    [CrossRef]
  35. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
    [CrossRef] [PubMed]
  36. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
    [CrossRef] [PubMed]
  37. L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
    [CrossRef] [PubMed]
  38. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
    [CrossRef]
  39. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
    [CrossRef]
  40. B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
    [CrossRef]
  41. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
    [CrossRef]
  42. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
    [CrossRef] [PubMed]
  43. T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
    [CrossRef]
  44. A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
    [CrossRef]

2013

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett.102(1), 011129 (2013).
[CrossRef]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

P. Alonso-González, P. Albella, F. Golmar, L. Arzubiaga, F. Casanova, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Visualizing the near-field coupling and interference of bonding and anti-bonding modes in infrared dimer nanoantennas,” Opt. Express21(1), 1270–1280 (2013).
[CrossRef] [PubMed]

2012

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

P. Ding, C. Z. Fan, Y. G. Cheng, E. J. Liang, and Q. Z. Xue, “Plasmon-induced transparency by detuned magnetic atoms in trirod metamaterials,” Appl. Opt.51(12), 1879–1885 (2012).
[CrossRef] [PubMed]

N. Niakan, M. Askari, and A. Zakery, “High Q-factor and large group delay at microwave wavelengths via electromagnetically induced transparency in metamaterials,” J. Opt. Soc. Am. B29(9), 2329–2333 (2012).
[CrossRef]

L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
[CrossRef] [PubMed]

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys.45(44), 445105 (2012).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

2011

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

W. J. Sun, Q. O. He, J. M. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

X. R. Jin, J. Park, H. Y. Zheng, S. Lee, Y. Lee, J. Y. Rhee, K. W. Kim, H. S. Cheong, and W. H. Jang, “Highly-dispersive transparency at optical frequencies in planar metamaterials based on two-bright-mode coupling,” Opt. Express19(22), 21652–21657 (2011).
[CrossRef] [PubMed]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

2010

J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
[CrossRef]

Y. Q. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

Z. G. Dong, H. Liu, M. X. Xu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, “Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars,” Opt. Express18(17), 18229–18234 (2010).
[CrossRef] [PubMed]

2009

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express17(1), 136–149 (2009).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

2008

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

2007

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

2006

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Aizpurua, J.

Akosman, A. E.

Albella, P.

Alici, K. B.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Al-Naib, I. A. I.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Alonso-González, P.

Alu, A.

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

An, Z. H.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Anlage, S. M.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Arzubiaga, L.

Askari, M.

Averitt, R. D.

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Beruete, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

Burokur, S. N.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

Cadatal, M.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Campillo, I.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

Cao, J. X.

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

Cao, T.

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

Cao, W.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Casanova, F.

Chan, C. T.

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Chen, L. T.

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

Chen, Z. H.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Cheng, Y. G.

Cheng, Y. Z.

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

Cheong, H. S.

Chiang, Y. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett.102(1), 011129 (2013).
[CrossRef]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Christ, A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Cong, L. Q.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Cryan, M. J.

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

Cummer, S. A.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Dabidian, N.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

de Lustrac, A.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

Ding, P.

Dong, L.

Dong, Z. G.

Economou, E. N.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Ekinci, Y.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Erentok, A.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Estacio, E.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Fan, C. Z.

Fan, K.

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Feng, Q.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

Fu, J. H.

Fu, L. W.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Furukawa, Y.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Gallot, G.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Gippius, N. A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Golmar, F.

Gong, R. Z.

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Greegor, R. B.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Gu, J. Q.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Guo, H. C.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Han, J. G.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Hand, T.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Hao, J. M.

W. J. Sun, Q. O. He, J. M. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
[CrossRef]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

He, Q. O.

He, S.

Y. Q. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Hillenbrand, R.

Hu, C. G.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Hua, J.

Huang, C.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Huang, X. Q.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Hueso, L. E.

Jang, W. H.

Jiang, T.

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Jin, X. R.

Kafesaki, M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

Kaiser, S.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Kanté, B.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

Kawazoe, Y.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Khanikaev, A. B.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Kim, K. W.

Kong, J. A.

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Koschny, T.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Kurter, C.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Lee, S.

Lee, Y.

Li, L. W.

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

Li, T.

Liang, E. J.

Liu, H.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Lourtioz, J. M.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

Luo, X. G.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Ma, X. L.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Martin, O. J. F.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Masson, J. B.

Meng, F. Y.

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys.45(44), 445105 (2012).
[CrossRef]

L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
[CrossRef] [PubMed]

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

Mizuseki, H.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Morandotti, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Mousavi, S. H.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Nakazato, T.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Navarro-Cia, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

Niakan, N.

Nie, Y.

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

Nielsen, J. A.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Ozaki, T.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Parazzoli, C. G.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Park, J.

Pham, M. H.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Pilon, D. V.

Ponseca, C.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Popa, B.-I.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Pu, M. B.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

Qiu, M.

J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
[CrossRef]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Ran, L. X.

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Ren, Q. J.

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Rhee, J. Y.

Rockstuhl, C.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Saito, S.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Sarukura, N.

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Schultz, S.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Schweizer, H.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Sellier, A.

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

Serebryannikov, A. E.

Shvets, G.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Singh, R.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Solak, H. H.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Sorolla, M.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Strikwerda, A. C.

Sun, W. J.

Tanielian, M. H.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Tao, H.

Tassin, P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Tian, Z.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Tikhodeev, S. G.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Ustinov, A. V.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Vier, D. C.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Wang, S. M.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Wu, C. H.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Wu, Q.

L. Zhu, L. Dong, F. Y. Meng, J. H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt.51(32), 7794–7799 (2012).
[CrossRef] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express20(4), 4494–4502 (2012).
[CrossRef] [PubMed]

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys.45(44), 445105 (2012).
[CrossRef]

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

Xu, M. X.

Xue, Q. Z.

Yang, Y.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Ye, Y. Q.

Y. Q. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Yen, T. J.

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett.102(1), 011129 (2013).
[CrossRef]

Yuan, Y.

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zakery, A.

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Zhang, K.

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

Zhang, L.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, W.

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

Zhang, W. L.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Zhang, X.

Zhao, Y.

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

Zheng, H. Y.

Zhou, L.

W. J. Sun, Q. O. He, J. M. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
[CrossRef]

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, L.

Zhu, S. N.

Zhuravel, A. P.

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

Ziolkowski, R. W.

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Acta Phys. Sin.

L. T. Chen, Y. Z. Cheng, Y. Nie, and R. Z. Gong, “Study on measurement and simulation of manipulating electromagnetic wave polarization by metamaterials,” Acta Phys. Sin.61, 094203 (2012).

Adv. Mater.

N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Plasmon hybridization in stacked cut-wire metamaterials,” Adv. Mater.19(21), 3628–3632 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, and W. Zhang, “Observing metamaterial induced transparency in individual Fano resonators with broken symmetry,” Appl. Phys. Lett.99(20), 201107 (2011).
[CrossRef]

T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett.97(26), 261113 (2010).
[CrossRef]

A. Erentok, R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B.-I. Popa, T. Hand, D. C. Vier, and S. Schultz, “Low frequency lumped element-based negative index metamaterial,” Appl. Phys. Lett.91(18), 184104 (2007).
[CrossRef]

Y. J. Chiang and T. J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett.102(1), 011129 (2013).
[CrossRef]

E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponseca, H. Mizuseki, and Y. Kawazoe, “Birefringence of β-BaB2O4 crystal in the terahertz region for parametric device design,” Appl. Phys. Lett.92(9), 091116 (2008).
[CrossRef]

Y. Q. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Front. Phys. China

J. M. Hao, M. Qiu, and L. Zhou, “Manipulate light polarizations with metamaterials: From microwave to visible,” Front. Phys. China5(3), 291–307 (2010).
[CrossRef]

J. Appl. Phys.

M. Beruete, M. Navarro-Cia, M. Sorolla, and I. Campillo, “Polarization selection with stacked hole array metamaterial,” J. Appl. Phys.103(5), 053102 (2008).
[CrossRef]

F. Y. Meng, K. Zhang, Q. Wu, and L. W. Li, “Polarization conversion of electromagnetic waves by Faraday chiral media,” J. Appl. Phys.107(5), 054104 (2010).
[CrossRef]

J. Opt.

T. Cao and M. J. Cryan, “Enhancement of circular dichroism by a planar non-chiral magnetic metamaterial,” J. Opt.14(8), 085101 (2012).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

L. Zhu, F. Y. Meng, J. H. Fu, and Q. Wu, “Electromagnetically induced transparency metamaterial with polarization insensitivity based on multi-quasi-dark modes,” J. Phys. D Appl. Phys.45(44), 445105 (2012).
[CrossRef]

Microwave Opt. Technol. Lett.

X. L. Ma, C. Huang, M. B. Pu, C. G. Hu, Q. Feng, and X. G. Luo, “Single-layer circular polarizer using metamaterial and its application,” Microwave Opt. Technol. Lett.54(7), 1770–1774 (2012).
[CrossRef]

New J. Phys.

L. Q. Cong, W. Cao, Z. Tian, J. Q. Gu, J. G. Han, and W. L. Zhang, “Manipulating polarization states of terahertz radiation using metamaterials,” New J. Phys.14(11), 115013 (2012).
[CrossRef]

Opt. Commun.

A. B. Khanikaev, S. H. Mousavi, C. H. Wu, N. Dabidian, K. B. Alici, and G. Shvets, “Electromagnetically induced polarization conversion,” Opt. Commun.285(16), 3423–3427 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev.182(2), 539–554 (1969).
[CrossRef]

Phys. Rev. A

J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A80(2), 023807 (2009).
[CrossRef]

Phys. Rev. B

Y. Zhao and A. Alu, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B84(20), 205428 (2011).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials,” Phys. Rev. B84(3), 035128 (2011).
[CrossRef]

B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B79(7), 075121 (2009).
[CrossRef]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B76(20), 201405 (2007).
[CrossRef]

Phys. Rev. Lett.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett.101(25), 253903 (2008).
[CrossRef] [PubMed]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett.102(5), 053901 (2009).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett.101(4), 047401 (2008).
[CrossRef] [PubMed]

C. Kurter, P. Tassin, L. Zhang, T. Koschny, A. P. Zhuravel, A. V. Ustinov, S. M. Anlage, and C. M. Soukoulis, “Classical analogue of electromagnetically induced transparency with a metal-superconductor hybrid metamaterial,” Phys. Rev. Lett.107(4), 043901 (2011).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett.99(14), 147401 (2007).
[CrossRef] [PubMed]

J. M. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Science

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science340(6138), 1304–1307 (2013).
[CrossRef] [PubMed]

Other

I. Sohail, Y. Rangay, K. P. Esselle, and S. G. Hay, “A linear to circular polarization converter based on Jerusalem-cross frequency selective surface,” in EuCAP (2013), pp. 2141–2143.

M. Moallem and K. Sarabandi, “A single-layer metamaterial-based polarizer and bandpass frequency selective surface with an adjacent transmission zero,” in AP-S (2011), pp. 2649–2652.
[CrossRef]

Y. Ranga, D. Thalakotuna, K. P. Esselle, S. G. Hay, L. Matekovits, and M. Orefice, “A transmission polarizer based on width-modulated lines and slots,” in IWAT (2013), pp. 299–302.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Unit cell configuration of the EIT-like metasurface (b) Photograph of the fabricated sample

Fig. 2
Fig. 2

Transmission amplitudes and phases of the metasurface for (a) y-polarization incident wave and (b) x-polarization incident wave. The pink (blue) parts indicate the areas of the phase advance (phase retard). The elements enclosed by dashed line in the inset of panel (a)/(b) can control the excitation of EIT-like effect for y-/x- polarization incident wave.

Fig. 3
Fig. 3

(a) The E-field plots of the designed metasurface at a frequency of 8.49 GHz for y-polarization incident wave, as indicated by the blue circular in Fig. 2(a). Surface current distributions of the designed metasurface at the frequencies of (b) 7.6 GHz and (c) 9.7 GHz for y-polarization incident wave, as shown two transmission dips in Fig. 2(a). (d) The E-field plots of the designed metasurface at a frequency of 9.65 GHz for x-polarization incident wave, as indicated by the blue circular in Fig. 2(b). Surface current distributions of the designed metasurface at the frequencies of (e) 8.9 GHz and (f) 10.8 GHz for x-polarization incident wave, as shown two transmission dips in Fig. 2(b).

Fig. 4
Fig. 4

Simulated (solid curves) and measured (dashed curves) (a) transmission amplitudes and (b) transmission phase differences for two incident polarizations. The blue dotted lines indicate the spectral location of the polarization conversion occurrence.

Fig. 5
Fig. 5

Surface current distributions of the designed metasurface at a frequency of 9.2 GHz for (a) y-polarization incident wave and (b) x-polarization incident wave.

Fig. 6
Fig. 6

(a) Measured and simulated AR results, (b) Simulated AR results with different incidence angle θ . The incident angle θ is the angle separation between a linearly polarized input wave and the z-axis.

Fig. 7
Fig. 7

Transmission loss of metasurface for different incident angle θ . The incident angle θ is the angle separation between a linearly polarized input wave and the z-axis.

Fig. 8
Fig. 8

The angles associated with the stoke’s parameters.

Fig. 9
Fig. 9

(a) The simulated (solid curves) and measured (dots) polarization ellipses at 9.2 GHz for a 45° linearly polarized input wave, representing 99.9% circular polarization (linear-to-circular conversion), and (b) the simulated (solid curves) and measured (dots) polarization ellipses at 9.2 GHz for a 60° linearly polarized wave, representing 86.1% circular polarization (linear-to-elliptical conversion). The axes represent the magnitude of the normalized electric field along the x and y axes after passing through the metasurface. The top panels indicate the polarization states at the input port. The bottom panels indicate the polarization states at the output port.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

| t x | 2 = | t y | 2 ,
| arg( t x )arg( t y ) |= 90 .
loss(dB/mm)=10 log 10 ( | s 21 | 2 1 | s 11 | 2 )/ d slab .
S 0 = | t x cos α in | 2 + | t y sin α in | 2 , S 1 = | t x cos α in | 2 | t y sin α in | 2 , S 2 =2| t x cos α in || t y sin α in |cos φ diff , S 3 =2| t x cos α in || t y sin α in |sin φ diff ,
tan 2 α o u t = S 2 S 1 ,
sin 2 χ = S 3 S 0 ,

Metrics