Abstract

We experimentally demonstrate efficient extinction spectroscopy of single plasmonic gold nanorods with exquisite fidelity (SNR > 20dB) and high efficiency light coupling (e. g., 9.7%) to individual plasmonic nanoparticles in an integrated platform. We demonstrate chip-scale integration of lithographically defined plasmonic nanoparticles on silicon nitride (Si3N4) ridge waveguides for on-chip localized surface plasmon resonance (LSPR) sensing. The integration of this hybrid plasmonic-photonic platform with microfluidic sample delivery system is also discussed for on-chip LSPR sensing of D-glucose with a large sensitivity of ∼ 250 nm/RIU. The proposed architecture provides an efficient means of interrogating individual plasmonic nanoparticles with large SNR in an integrated alignment-insensitive platform, suitable for high-density on-chip sensing and spectroscopy applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Willets and R. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
    [CrossRef]
  2. I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
    [CrossRef] [PubMed]
  3. A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
    [CrossRef]
  4. A. Haes and R. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002).
    [CrossRef] [PubMed]
  5. A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
    [CrossRef] [PubMed]
  6. A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
    [CrossRef] [PubMed]
  7. K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
    [CrossRef] [PubMed]
  8. A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
    [CrossRef]
  9. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
    [CrossRef]
  10. S. Stranahan and K. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett.103777–3784 (2010).
    [CrossRef] [PubMed]
  11. E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
    [CrossRef] [PubMed]
  12. M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
    [CrossRef]
  13. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, 22292–22304 (2011).
    [CrossRef] [PubMed]
  14. M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
    [CrossRef]
  15. F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
    [CrossRef]
  16. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
    [CrossRef] [PubMed]
  17. S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” P. Nat. Acad. Sci.108, 3147–3151 (2011).
    [CrossRef]
  18. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
    [CrossRef]
  19. M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
    [CrossRef]
  20. L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).
  21. J. Kim, “Joining plasmonics with microfluidics: from convenience to inevitability,” Lab Chip12, 3611–3623 (2012).
    [CrossRef] [PubMed]
  22. Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
    [CrossRef] [PubMed]
  23. H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
    [CrossRef] [PubMed]
  24. E. Shah Hosseini, S. Yegnanarayanan, A. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17, 14543–14551 (2009).
    [CrossRef]
  25. X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
    [CrossRef] [PubMed]
  26. M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
    [CrossRef] [PubMed]
  27. J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
    [CrossRef] [PubMed]
  28. D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
    [CrossRef] [PubMed]
  29. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
    [CrossRef] [PubMed]
  30. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
    [CrossRef]
  31. B. Momeni, E. Hosseini, and A. Adibi, “Planar photonic crystal microspectrometers in silicon-nitride for the visible range,” Opt. Express17, 17060–17069 (2009).
    [CrossRef] [PubMed]
  32. M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett.34, 220–222 (2009).
    [CrossRef] [PubMed]
  33. C. A. Barrios, B. Snchez, K. B. Gylfason, A. Griol, H. Sohlstrm, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express15, 6846–6856 (2007).
    [CrossRef] [PubMed]
  34. D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express12, 2710–2715 (2004).
    [CrossRef] [PubMed]
  35. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13, 977–984 (2005).
    [CrossRef] [PubMed]

2013

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

2012

M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
[CrossRef] [PubMed]

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

J. Kim, “Joining plasmonics with microfluidics: from convenience to inevitability,” Lab Chip12, 3611–3623 (2012).
[CrossRef] [PubMed]

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
[CrossRef] [PubMed]

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
[CrossRef]

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

2011

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” P. Nat. Acad. Sci.108, 3147–3151 (2011).
[CrossRef]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, 22292–22304 (2011).
[CrossRef] [PubMed]

2010

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
[CrossRef]

S. Stranahan and K. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett.103777–3784 (2010).
[CrossRef] [PubMed]

2009

2008

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

2007

2006

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

2005

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express13, 977–984 (2005).
[CrossRef] [PubMed]

I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
[CrossRef] [PubMed]

2004

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

D. Yin, H. Schmidt, J. Barber, and A. Hawkins, “Integrated ARROW waveguides with hollow cores,” Opt. Express12, 2710–2715 (2004).
[CrossRef] [PubMed]

2003

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

2002

A. Haes and R. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002).
[CrossRef] [PubMed]

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

1998

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

Aassime, A.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Abashin, M.

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Adibi, A.

Anker, J.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Apuzzo, A.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Arango, F. B.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
[CrossRef]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Atabaki, A.

Barber, J.

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Barhoumi, A.

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

Barrios, C. A.

Berini, P.

Blaize, S.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Boriskina, S.

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” P. Nat. Acad. Sci.108, 3147–3151 (2011).
[CrossRef]

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

Boriskina, S. V.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Casquel, R.

Cetinkaya, M.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Chamanzar, M.

M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
[CrossRef] [PubMed]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express19, 22292–22304 (2011).
[CrossRef] [PubMed]

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
[CrossRef]

M. Chamanzar, B. Momeni, and A. Adibi, “Compact on-chip interferometers with high spectral sensitivity,” Opt. Lett.34, 220–222 (2009).
[CrossRef] [PubMed]

Chang, L.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

Charbonneau, R.

Chelnokov, A.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Dagens, B.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Dal Negro, L.

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Delacour, C.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Demirel, M. C.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Dinish, U. S.

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

Duffy, D.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

El-Sayed, I.

I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M.

M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
[CrossRef] [PubMed]

I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Fainman, Y.

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Fan, X.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Feng, L.

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Fvrier, M.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Gogol, P.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Gopinath, A.

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

Griol, A.

Gylfason, K. B.

Haes, A.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

A. Haes and R. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002).
[CrossRef] [PubMed]

Halas, N.

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

Hall, W.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

Hawkins, A.

Henry, A.-I.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Holgado, M.

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Hosseini, E.

Hsieh, Y.-H.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Hsu, C.-Y.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Huang, X.

I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
[CrossRef] [PubMed]

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Jiang, X.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Kho, K.

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

Kim, J.

J. Kim, “Joining plasmonics with microfluidics: from convenience to inevitability,” Lab Chip12, 3611–3623 (2012).
[CrossRef] [PubMed]

Klar, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Klein, W.

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

Koenderink, A. F.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
[CrossRef]

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Kumar, A.

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Kwadrin, A.

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
[CrossRef]

Lahoud, N.

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Lin, K.-J.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Lomakin, V.

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Lourtioz, J.-M.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Lyandres, O.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Mahmoud, M. E.

M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
[CrossRef] [PubMed]

Marks, L. D.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Mattiussi, G.

McDonald, J.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

McFarland, A.

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

Mgy, R.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

Miller, B. L.

H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
[CrossRef] [PubMed]

Momeni, B.

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Olivo, M.

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

Peng, H.-I.

H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
[CrossRef] [PubMed]

Premasiri, W.

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Reinhard, B.

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” P. Nat. Acad. Sci.108, 3147–3151 (2011).
[CrossRef]

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

Ringe, E.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Santiago-Cordoba, M. A.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Schmidt, H.

Schueller, O.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

Shah, N.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Shah Hosseini, E.

Sharma, B.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

Shopova, S.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Snchez, B.

Sohlstrm, H.

Soltani, M.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
[CrossRef]

E. Shah Hosseini, S. Yegnanarayanan, A. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17, 14543–14551 (2009).
[CrossRef]

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

Stranahan, S.

S. Stranahan and K. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett.103777–3784 (2010).
[CrossRef] [PubMed]

Strohsahl, C. M.

H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Tam, F.

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

Tang, Y.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

Van Duyne, R.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

K. Willets and R. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

A. Haes and R. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002).
[CrossRef] [PubMed]

Van Duyne, R. P.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Van Orden, D.

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Vollmer, F.

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

White, I.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Whitesides, G.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

Willets, K.

S. Stranahan and K. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett.103777–3784 (2010).
[CrossRef] [PubMed]

K. Willets and R. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

Xi, J.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

Yang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

Yegnanarayanan, S.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
[CrossRef]

E. Shah Hosseini, S. Yegnanarayanan, A. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express17, 14543–14551 (2009).
[CrossRef]

Yin, D.

Yin, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

Zhang, D.

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

Zhang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

Zhang, Y.

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

Zhao, J.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Ziegler, L.

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

ACS Nano

K. Kho, U. S. Dinish, A. Kumar, and M. Olivo, “Frequency shifts in SERS for bio-sensing,” ACS Nano6, 4892–4902 (2012).
[CrossRef] [PubMed]

F. B. Arango, A. Kwadrin, and A. F. Koenderink, “Plasmonic antennas hybridized with dielectric waveguides,” ACS Nano6, 10156–10167 (2012).
[CrossRef]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano5, 2831–2838 (2011).
[CrossRef] [PubMed]

Anal. Chem.

D. Duffy, J. McDonald, O. Schueller, and G. Whitesides, “Rapid prototyping of microfluidic systems in poly (dimethylsiloxane),” Anal. Chem.70, 4974–4984 (1998).
[CrossRef] [PubMed]

Anal. Chim. Acta.

X. Fan, I. White, S. Shopova, H. Zhu, J. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta.620, 8–26 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem.

K. Willets and R. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem.58, 267–297 (2007).
[CrossRef]

Appl. Phys. B-Lasers O.

M. Chamanzar, M. Soltani, B. Momeni, S. Yegnanarayanan, and A. Adibi, “Hybrid photonic surface-plasmonpolariton ring resonators for sensing applications,” Appl. Phys. B-Lasers O.101, 263–271 (2010).
[CrossRef]

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 μm square Si wire waveguides to singlemode fibres,” Electron. Lett.38, 1669–1670 (2002).
[CrossRef]

J. Am. Chem. Soc.

M. E. Mahmoud, M. Chamanzar, A. Adibi, and M. El-Sayed, “Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems; silver nanocubes,” J. Am. Chem. Soc.134, 6434–6442 (2012).
[CrossRef] [PubMed]

A. Haes and R. Van Duyne, “A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles,” J. Am. Chem. Soc.124, 10596–10604 (2002).
[CrossRef] [PubMed]

A. Barhoumi, D. Zhang, F. Tam, and N. Halas, “Surface-enhanced Raman spectroscopy of DNA,” J. Am. Chem. Soc.130, 5523–5529 (2008).
[CrossRef] [PubMed]

J. Biophotonics

M. A. Santiago-Cordoba, M. Cetinkaya, S. V. Boriskina, F. Vollmer, and M. C. Demirel, “Ultrasensitive detection of a protein by optical trapping in a photonic-plasmonic microcavity,” J. Biophotonics5, 629–638 (2012).
[CrossRef]

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B110, 7238–7248 (2006).
[CrossRef] [PubMed]

Lab Chip

J. Kim, “Joining plasmonics with microfluidics: from convenience to inevitability,” Lab Chip12, 3611–3623 (2012).
[CrossRef] [PubMed]

Y. Zhang, Y. Tang, Y.-H. Hsieh, C.-Y. Hsu, J. Xi, K.-J. Lin, and X. Jiang, “Towards a high-throughput label-free detection system combining localized-surface plasmon resonance and microfluidics,” Lab Chip12, 3012–3015 (2012).
[CrossRef] [PubMed]

H.-I. Peng, C. M. Strohsahl, and B. L. Miller, “Microfluidic nanoplasmonic-enabled device for multiplex DNA detection,” Lab Chip12, 1089–1093 (2012).
[CrossRef] [PubMed]

Nano Lett.

M. Fvrier, P. Gogol, A. Aassime, R. Mgy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J.-M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12, 1032–1037 (2012).
[CrossRef]

A. Gopinath, S. Boriskina, W. Premasiri, L. Ziegler, B. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9, 3922–3929 (2009).
[CrossRef] [PubMed]

I. El-Sayed, X. Huang, and M. El-Sayed, “Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer,” Nano Lett.5, 829–834 (2005).
[CrossRef] [PubMed]

A. Haes, W. Hall, L. Chang, W. Klein, and R. Van Duyne, “A localized surface plasmon resonance biosensor: First steps toward an assay for alzheimer’s disease,” Nano Lett.4, 1029–1034 (2004).
[CrossRef]

A. McFarland and R. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano Lett.3, 1057–1062 (2003).
[CrossRef]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett.3, 935–938 (2003).
[CrossRef]

S. Stranahan and K. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett.103777–3784 (2010).
[CrossRef] [PubMed]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Nat. Mater.

J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao, and R. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7, 442–453 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

P. Nat. Acad. Sci.

S. Boriskina and B. Reinhard, “Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits,” P. Nat. Acad. Sci.108, 3147–3151 (2011).
[CrossRef]

Phys. Chem. Chem. Phys.

E. Ringe, B. Sharma, A.-I. Henry, L. D. Marks, and R. P. Van Duyne, “Single nanoparticle plasmonics,” Phys. Chem. Chem. Phys.15, 4110–4129 (2013).
[CrossRef] [PubMed]

Other

L. Feng, D. Van Orden, M. Abashin, V. Lomakin, and Y. Fainman, “Nanoscale optical field localization by resonantly focused plasmons,” in “International Quantum Electronics Conference,” (Optical Society of America, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the hybrid plasmonic-photonic structure consisting of a Si3N4 ridge waveguide integrated with a plasmonic nanoparticle. The guided mode travelling along the waveguide can excite the LSPR mode of the plasmonic nanoparticle.

Fig. 2
Fig. 2

Fabrication process flow for the hybrid plasmonic-photonic waveguide structure involving two steps of EBL. In the first step, the plasmonic nanoparticle pattern is defined, and then metals consisting of 3 nm Ti and 27 nm Au are deposited, followed by a lift-off procedure. In the next step of lithography, Si3N4 ridge waveguide pattern is defined and subsequently etched using RIE.

Fig. 3
Fig. 3

Scanning electron micrograph (SEM) of an exemplary hybrid plasmonic-photonic waveguide consisting of a gold nanorod and a Si3N4 ridge waveguide.

Fig. 4
Fig. 4

A PDMS microfluidic system integrated with a Si3N4 chip consisting of an array of hybrid waveguides. PDMS is punched on the reservoirs for the insertion of inlet and outlet tubes. The direction of fluid flow is perpendicular to the light travel direction in the waveguides.

Fig. 5
Fig. 5

Schematic of the characterization setup including a supercontinuum laser source and a spectrometer. Light is polarized and then butt-coupled to the input waveguide through a focusing achromatic lens. The waveguide output port is imaged to the entrance slit of a spectrometer. The top microscope assembly can either be used for brightfield or darkfield imaging and scattering measurements.

Fig. 6
Fig. 6

(a) Normalized extinction spectrum for different gold nanorods fabricated on different Si3N4 waveguides with identical dimensions of 865 nm × 200 nm. All of the nanorods have a thickness of 27 nm and a width of 57 nm, with different lengths (d1), indicated on each curve. By increasing the length of the gold nanorod, the resonance wavelength redshifts. (b) The extinction spectrum of the single gold nanorod with a length of 96 nm.

Fig. 7
Fig. 7

Darkfield scattering image of an array of identical plasmonic gold nanorods of dimensions 96 × 57 × 27 nm integrated with a Si3N4 waveguide measured from top.

Fig. 8
Fig. 8

Refractive index of dextrose at different concentrations and the linear regression fit. The relation between the refractive index and the concentration is obtained as n = 0.16[C]+ 1.334.

Fig. 9
Fig. 9

The LSPR spectrum of a hybrid waveguide device consisting of 96 × 57 × 27 nm gold nanorods integrated with a 865 nm × 200 nm Si3N4 waveguide for a dextrose solution of 8% concentration. The LSPR extinction spectrum of the device when DI water is flowing through the microfluidic channel is shown before and after the introduction of the dextrose solution, showing a good reversibility and stability over time.

Fig. 10
Fig. 10

The LSPR wavelength shift versus concentration for dextrose solutions of different concentrations. The hybrid waveguide device consists of a 865 nm × 200 nm Si3N4 waveguide and 96 × 57 × 27 nm gold nanorods. The linear regression fit to the measurement results suggests a large sensitivity of about 250 nm/RIU, with a coefficient of determination R2 = 0.988.

Tables (1)

Tables Icon

Table 1 Coupling efficiency and SNR for different gold nanorods in the hybrid platform.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Extinction = 10 log ( Trans Sample ( λ ) D Trans Ref ( λ ) D ) ,

Metrics