Abstract

A 1000 nm wide supercontinuum, spanning from 1470 nm in the telecom band to 2470 nm in the mid-infrared is demonstrated in a 800 nm x 220 nm 1 cm long hydrogenated amorphous silicon strip waveguide. The pump source was a picosecond Thulium doped fiber laser centered at 1950 nm. The real part of the nonlinear parameter of this waveguide at 1950 nm is measured to be 100 ± 10 W−1m−1, while the imaginary part of the nonlinear parameter is measured to be 1.2 ± 0.2 W−1m−1. The supercontinuum is stable over a period of at least several hours, as the hydrogenated amorphous silicon waveguides do not degrade when exposed to the high power picosecond pulse train.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001).
    [CrossRef] [PubMed]
  3. T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
    [CrossRef]
  4. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, “Wavelength-division-multiplexed millimeter-waveband radio-on-fiber system using a supercontinuum light source,” J. Lightwave Technol.24(1), 404–410 (2006).
    [CrossRef]
  5. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
    [CrossRef]
  6. Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express21(7), 8269–8275 (2013).
    [CrossRef] [PubMed]
  7. S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6-7), 799–802 (2002).
    [CrossRef]
  8. M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
    [CrossRef] [PubMed]
  9. C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett.38(15), 2865–2868 (2013).
    [CrossRef] [PubMed]
  10. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).
  11. R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
    [CrossRef] [PubMed]
  12. C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36(19), 3912–3914 (2011).
    [CrossRef] [PubMed]
  13. B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
    [CrossRef] [PubMed]
  14. B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
    [CrossRef] [PubMed]
  15. K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007).
    [CrossRef] [PubMed]
  16. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012).
    [CrossRef] [PubMed]
  17. S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37(8), 1382–1384 (2012).
    [CrossRef] [PubMed]
  18. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010).
    [CrossRef] [PubMed]
  19. K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express20(22), 24600–24606 (2012).
    [CrossRef] [PubMed]
  20. B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011).
    [CrossRef] [PubMed]
  21. J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21(4), 3932–3940 (2013).
    [CrossRef] [PubMed]
  22. C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20(20), 22609–22615 (2012).
    [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  24. G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express3(9), 1523–1536 (2013).
    [CrossRef]
  25. H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
    [CrossRef]
  26. L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express21(11), 13075–13083 (2013).
    [CrossRef] [PubMed]
  27. L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32(14), 2031–2033 (2007).
    [CrossRef] [PubMed]
  28. F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

2013 (5)

2012 (5)

2011 (5)

2010 (1)

2008 (2)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

2002 (1)

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6-7), 799–802 (2002).
[CrossRef]

2001 (1)

1996 (1)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

1991 (1)

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Aggarwal, I. D.

Agrawal, G. P.

Andreadakis, N. C.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Badding, J. V.

Baets, R.

Ballesteros, G. C.

Ben Bakir, B.

Bhat, R.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Bogaerts, W.

Boppart, S. A.

Byer, R. L.

Carletti, L.

Cerutti, L.

Chen, X.

Choi, D. Y.

Chudoba, C.

Clemmen, S.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Dave, U. D.

Day, T. D.

Dekker, S. A.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Eggleton, B. J.

Elder, A. D.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

Emplit, P.

Fainman, Y.

Fedeli, J. M.

Fédéli, J. M.

Fejer, M. M.

Fermann, M. E.

Foster, A. C.

Foster, M. A.

Frank, J. H.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

Fujimoto, J. G.

Gaeta, A. L.

Galili, M.

Gassenq, A.

Gautier, P.

Gencarelli, F.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Ghanta, R. K.

Grant, R. S.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Green, W.

Green, W. M. J.

Grillet, C.

Grosse, P.

Halir, R.

Hartl, I.

Hasama, T.

Hattasan, N.

Healy, N.

Hens, Z.

Hu, C.

Hu, H.

Hudson, D. D.

Hult, J.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

Ikeda, K.

Ishikawa, H.

Itoga, E.

Jackson, S. D.

Jeppesen, P.

Ji, H.

Jiang, J.

Judge, A. C.

Kamatani, O.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Kamei, T.

Kaminski, C. F.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

Kanamori, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Kawanishi, S.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Kawashima, H.

Keyvaninia, S.

F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

King, M. D.

Kitayama, K.

Ko, T. H.

Koza, M. A.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Kuri, T.

Kuyken, B.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express3(9), 1523–1536 (2013).
[CrossRef]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011).
[CrossRef] [PubMed]

F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

Lamont, M. R. E.

Langrock, C.

LeBlanc, H. P.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Leo, F.

Levy, J. S.

Li, E.

Li, X. D.

Lipson, M.

Liu, X.

Liu, Y.

Loo, R.

Luther-Davies, B.

Madden, S.

Mägi, E. C.

Malik, A.

Marandi, A.

Martí, J.

Mashanovich, G.

Massar, S.

Matres, J.

Mehta, P.

Menezo, S.

Monat, C.

Mori, M.

Morioka, T.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Morthier, G.

Moss, D. J.

Muneeb, M.

Nakanishi, K.

Nakasyotani, T.

Namiki, S.

Narayanan, K.

Nedeljkovic, M.

Ogasawara, T.

Okawachi, Y.

Ono, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Osgood, R.

Osgood, R. M.

Oton, C. J.

Oxenløwe, L. K.

Peacock, A. C.

Pelc, J. S.

Penty, R. V.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Petrillo, K. G.

Phillips, C. R.

Preble, S. F.

Pu, M.

Ranka, J. K.

Rodriguez, J. B.

Roelkens, G.

G. Roelkens, U. D. Dave, A. Gassenq, N. Hattasan, C. Hu, B. Kuyken, F. Leo, A. Malik, M. Muneeb, E. Ryckeboer, S. Uvin, Z. Hens, R. Baets, Y. Shimura, F. Gencarelli, B. Vincent, R. Loo, J. Van Campenhout, L. Cerutti, J. B. Rodriguez, E. Tournié, X. Chen, M. Nedeljkovic, G. Mashanovich, L. Shen, N. Healy, A. C. Peacock, X. Liu, R. Osgood, and W. Green, “Silicon-based heterogeneous photonic integrated circuits for the mid-infrared,” Opt. Mater. Express3(9), 1523–1536 (2013).
[CrossRef]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011).
[CrossRef] [PubMed]

F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

Rudy, C. W.

Ryckeboer, E.

Sakakibara, Y.

Sanders, S. T.

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6-7), 799–802 (2002).
[CrossRef]

Sanghera, J. S.

Saruwatari, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Selvaraja, S. K.

Shaw, L. B.

Shen, L.

Shen, Y. M.

Shimura, Y.

Sibbett, W.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Soole, J. B. D.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Sparks, J. R.

Suda, S.

Takahashi, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Takara, H.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Takei, R.

Takiguchi, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Tanizawa, K.

Toda, H.

Tournié, E.

Tsang, H. K.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Tu, H.

Uchiyama, K.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Uvin, S.

Van Campenhout, J.

Van Thourhout, D.

Vincent, B.

Vodopyanov, K. L.

Wang, K.-Y.

Watt, R. S.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

White, I. H.

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

Windeler, R. S.

Yamada, M.

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

Yin, L.

Zhao, Y.

Appl. Phys. B (2)

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008).
[CrossRef]

S. T. Sanders, “Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy,” Appl. Phys. B75(6-7), 799–802 (2002).
[CrossRef]

Electron. Lett. (1)

T. Morioka, H. Takara, S. Kawanishi, O. Kamatani, K. Takiguchi, K. Uchiyama, M. Saruwatari, H. Takahashi, M. Yamada, T. Kanamori, and H. Ono, “1 Tbit/s (100 Gbit/s×10 channel) OTDM/WDM transmission using a single supercontinuum WDM source,” Electron. Lett.32(10), 906–907 (1996).
[CrossRef]

J. Appl. Phys. (1)

H. K. Tsang, R. V. Penty, I. H. White, R. S. Grant, W. Sibbett, J. B. D. Soole, H. P. LeBlanc, N. C. Andreadakis, R. Bhat, and M. A. Koza, “Two-photon absorption and self-phase modulation in InGaAsP/InP multi-quantumwell wave-guides,” J. Appl. Phys.70(7), 3992–3994 (1991).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (10)

K. Ikeda, Y. M. Shen, and Y. Fainman, “Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices,” Opt. Express15(26), 17761–17771 (2007).
[CrossRef] [PubMed]

M. R. E. Lamont, B. Luther-Davies, D. Y. Choi, S. Madden, and B. J. Eggleton, “Supercontinuum generation in dispersion engineered highly nonlinear (γ = 10 /W/m) As2S3 chalcogenide planar waveguide,” Opt. Express16(19), 14938–14944 (2008).
[CrossRef] [PubMed]

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010).
[CrossRef] [PubMed]

B. Kuyken, X. Liu, R. M. Osgood, R. Baets, G. Roelkens, and W. M. J. Green, “Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides,” Opt. Express19(21), 20172–20181 (2011).
[CrossRef] [PubMed]

B. Kuyken, H. Ji, S. Clemmen, S. K. Selvaraja, H. Hu, M. Pu, M. Galili, P. Jeppesen, G. Morthier, S. Massar, L. K. Oxenløwe, G. Roelkens, and R. Baets, “Nonlinear properties of and nonlinear processing in hydrogenated amorphous silicon waveguides,” Opt. Express19(26), B146–B153 (2011).
[CrossRef] [PubMed]

C. Grillet, L. Carletti, C. Monat, P. Grosse, B. Ben Bakir, S. Menezo, J. M. Fedeli, and D. J. Moss, “Amorphous silicon nanowires combining high nonlinearity, FOM and optical stability,” Opt. Express20(20), 22609–22615 (2012).
[CrossRef] [PubMed]

K.-Y. Wang, K. G. Petrillo, M. A. Foster, and A. C. Foster, “Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides,” Opt. Express20(22), 24600–24606 (2012).
[CrossRef] [PubMed]

J. Matres, G. C. Ballesteros, P. Gautier, J. M. Fédéli, J. Martí, and C. J. Oton, “High nonlinear figure-of-merit amorphous silicon waveguides,” Opt. Express21(4), 3932–3940 (2013).
[CrossRef] [PubMed]

Y. Liu, M. D. King, H. Tu, Y. Zhao, and S. A. Boppart, “Broadband nonlinear vibrational spectroscopy by shaping a coherent fiber supercontinuum,” Opt. Express21(7), 8269–8275 (2013).
[CrossRef] [PubMed]

L. Shen, N. Healy, P. Mehta, T. D. Day, J. R. Sparks, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core fibers towards the mid-infrared regime,” Opt. Express21(11), 13075–13083 (2013).
[CrossRef] [PubMed]

Opt. Lett. (9)

C. W. Rudy, A. Marandi, K. L. Vodopyanov, and R. L. Byer, “Octave-spanning supercontinuum generation in in situ tapered As₂S₃ fiber pumped by a thulium-doped fiber laser,” Opt. Lett.38(15), 2865–2868 (2013).
[CrossRef] [PubMed]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001).
[CrossRef] [PubMed]

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012).
[CrossRef] [PubMed]

S. Suda, K. Tanizawa, Y. Sakakibara, T. Kamei, K. Nakanishi, E. Itoga, T. Ogasawara, R. Takei, H. Kawashima, S. Namiki, M. Mori, T. Hasama, and H. Ishikawa, “Pattern-effect-free all-optical wavelength conversion using a hydrogenated amorphous silicon waveguide with ultra-fast carrier decay,” Opt. Lett.37(8), 1382–1384 (2012).
[CrossRef] [PubMed]

R. Halir, Y. Okawachi, J. S. Levy, M. A. Foster, M. Lipson, and A. L. Gaeta, “Ultrabroadband supercontinuum generation in a CMOS-compatible platform,” Opt. Lett.37(10), 1685–1687 (2012).
[CrossRef] [PubMed]

B. Kuyken, S. Clemmen, S. K. Selvaraja, W. Bogaerts, D. Van Thourhout, P. Emplit, S. Massar, G. Roelkens, and R. Baets, “On-chip parametric amplification with 26.5 dB gain at telecommunication wavelengths using CMOS-compatible hydrogenated amorphous silicon waveguides,” Opt. Lett.36(4), 552–554 (2011).
[CrossRef] [PubMed]

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As2S3 taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011).

C. R. Phillips, C. Langrock, J. S. Pelc, M. M. Fejer, J. Jiang, M. E. Fermann, and I. Hartl, “Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system,” Opt. Lett.36(19), 3912–3914 (2011).
[CrossRef] [PubMed]

L. Yin and G. P. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett.32(14), 2031–2033 (2007).
[CrossRef] [PubMed]

Opt. Mater. Express (1)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

F. Leo, U. D. Dave, B. Kuyken, S. Keyvaninia, and G. Roelkens, “Measurement and tuning of the chromatic dispersion around the half band gap spectral region of a silicon photonic wire,” Opt. Lett. (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The build-up of the supercontinuum with increasing power. MI1 bands appear at 7.6 W peak power, MI2 at 9.5 W and at 11.1 W the bands merge to form the supercontinuum which then grows as power is increased to 12.6 W and 14.7 W and it finally saturates when the spectral width is about 1000 nm at 46 W. Successive plots are shifted by 20dB for clarity. The inset shows the SEM cross-section of the waveguide used in the experiment.

Fig. 2
Fig. 2

Stability of the generated supercontinuum over time demonstrating that the hydrogenated amorphous silicon material is stable at the 1950 nm pump wavelength for at least several hours. The peak power in the waveguide is 60 ± 10 W.

Fig. 3
Fig. 3

(a) Plot of the peak powers coupled out of the waveguide versus input peak power, which shows a sub linear relation. (b) Plot of the inverse transmission and a linear fit, which gives a value for the two-photon absorption coefficient of the amorphous silicon material of βTPA = 2.3x10−13 mW−1.

Fig. 4
Fig. 4

Measured spectra (left) for the determination of Re(γ) with coupled peak powers of 1.9 W, 6.1 W, 7.6 W, 9.5 W and 11.1 W and the simulations of the nonlinear Schrödinger equation (right) resulting in Re(γ) = 100 ± 10 W−1m−1. Successive plots are shifted by 30dB for clarity.

Fig. 5
Fig. 5

Supercontinuum generation in crystalline silicon waveguides. The positions of the modulation instability bands of a crystalline silicon waveguide with the same dimensions as the one used for the supercontinuum generation in a-Si:H show that the dispersion of this waveguide is similar. Clearly, a-Si:H is a better material system for supercontinuum generation at this wavelength. Successive plots are shifted by 20dB for clarity.

Tables (1)

Tables Icon

Table 1 Comparison of present work to supercontinuum generation in literature

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δk+2.Re(γ)P= k s + k i 2 k p +2.Re(γ)P= β 2 Δ ω 2 + 1 12 β 4 Δ ω 4 +2.Re(γ)P
γ= k 0 n 2 A eff +i β TPA 2 A eff
1 T = P IN P OUT =exp( α LIN L ) L eff A eff β TPA P IN +exp( α LIN L )

Metrics