Abstract

The impacts of side exposed side strips (for high order modes suppression) and ridge width on terahertz (THz) quantum cascade laser (QCL) performance are investigated through numerical modeling and verified experimentally. Our results show that shrinking ridge width of THz QCLs with metal-metal waveguides leads to a substantial degradation of device performance due to higher optical loss resulting from the side-exposed strips in the highly-doped top contact layer. Nevertheless, the side-exposed strips facilitate single mode operation by strongly suppressing higher-order modes. An optimal width of the side exposed strips is obtained for achieving adequate higher-order mode suppression and maintaining sufficiently low fundamental mode loss.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
    [CrossRef] [PubMed]
  2. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
    [CrossRef]
  3. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
    [CrossRef] [PubMed]
  4. S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
    [CrossRef] [PubMed]
  5. W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
    [CrossRef]
  6. P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
    [CrossRef]
  7. Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
    [CrossRef]
  8. J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).
  9. E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
    [CrossRef]
  10. S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
    [CrossRef]
  11. D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
    [CrossRef]
  12. S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
    [CrossRef]
  13. V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
    [CrossRef]
  14. O. K. Kim and W. G. Spitzer, “Infrared reflectivity spectra and Raman spectra of Ga1-xAlxAs mixed crystals,” J. Appl. Phys.50(6), 4362–4370 (1979).
    [CrossRef]
  15. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt.24(24), 4493–4499 (1985).
    [CrossRef] [PubMed]
  16. D. R. Lide, “Electrical resistivity of pure metals,” in CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).
  17. S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
    [CrossRef]
  18. Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
    [CrossRef]
  19. S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
    [CrossRef]
  20. S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
    [CrossRef]
  21. X. Huang, Y. Chiu, W. O. Charles, and C. Gmachl, “Ridge-width dependence of the threshold of long wavelength (λ ≈ 14 µm) quantum cascade lasers with sloped and vertical sidewalls,” Opt. Express20(3), 2539–2547 (2012).
    [CrossRef] [PubMed]

2013 (1)

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

2012 (3)

2011 (1)

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

2010 (1)

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

2008 (3)

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

2007 (2)

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
[CrossRef] [PubMed]

2006 (1)

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

2005 (2)

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
[CrossRef]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

2004 (1)

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

2003 (1)

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

2002 (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

1993 (1)

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

1985 (1)

1979 (1)

O. K. Kim and W. G. Spitzer, “Infrared reflectivity spectra and Raman spectra of Ga1-xAlxAs mixed crystals,” J. Appl. Phys.50(6), 4362–4370 (1979).
[CrossRef]

Aers, G.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

Aers, G. C.

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Akalin, T.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Alexander, R. W.

Alton, J.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Andronico, A.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Ban, D.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Barbieri, S.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Beere, H.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Beere, H. E.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Belkin, M. A.

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

Bell, R. J.

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Buchanan, M.

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Callebaut, H.

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

Capasso, F.

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

Chan, C. W. I.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

Charles, W. O.

Chassagneux, Y.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Chin, V. W. L.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Chiu, Y.

Colombelli, R.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Coudevylle, J. R.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

David, J.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Davies, A. G.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Dhillon, S.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Doris, L.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Dupont, E.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

Evans, A.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Fan, J. A.

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

Fathololoumi, S.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

Filloux, P.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Gellie, P.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Gmachl, C.

Graf, M.

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

Griffiths, G. J.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Hu, Q.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
[CrossRef]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

Huang, X.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Jirauschek, C.

Kachwalla, Z.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Khanna, S. P.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

Kim, O. K.

O. K. Kim and W. G. Spitzer, “Infrared reflectivity spectra and Raman spectra of Ga1-xAlxAs mixed crystals,” J. Appl. Phys.50(6), 4362–4370 (1979).
[CrossRef]

Kohen, S.

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
[CrossRef]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Kumar, S.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
[CrossRef] [PubMed]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

Lachab, M.

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

Laframboise, S. R.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

Lampin, J.-F.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Lee, A. W. M.

Leo, G.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

Lindskog, M.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

Linfield, E. H.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Liu, H. C.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Long, L. L.

Maineult, W.

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Mátyás, A.

Ordal, M. A.

Osotchan, T.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Palomo, J.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Parent, G.

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

Peytavit, E.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

Qin, Q.

Querry, M. R.

Razavipour, S. G.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

Razeghi, M.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Reno, J. L.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
[CrossRef] [PubMed]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

Ritchie, D.

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Ritchie, D. A.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Sirtori, C.

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

Slivken, S.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Spitzer, W. G.

O. K. Kim and W. G. Spitzer, “Infrared reflectivity spectra and Raman spectra of Ga1-xAlxAs mixed crystals,” J. Appl. Phys.50(6), 4362–4370 (1979).
[CrossRef]

Tansley, T. L.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Vaughan, M. R.

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

Wächter, M.

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Wacker, A.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

Wasilewski, Z. R.

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R. Wasilewski, S. R. Laframboise, D. Ban, A. Mátyás, C. Jirauschek, Q. Hu, and H. C. Liu, “Terahertz quantum cascade lasers operating up to ~ 200 K with optimized oscillator strength and improved injection tunneling,” Opt. Express20(4), 3866–3876 (2012).
[CrossRef] [PubMed]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Williams, B. S.

S. Kumar, B. S. Williams, Q. Qin, A. W. M. Lee, Q. Hu, and J. L. Reno, “Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides,” Opt. Express15(1), 113–128 (2007).
[CrossRef] [PubMed]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
[CrossRef]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

Yu, J. S.

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

Y. Chassagneux, J. Palomo, R. Colombelli, S. Dhillon, C. Sirtori, H. Beere, J. Alton, and D. Ritchie, “Terahertz microcavity lasers with subwavelength mode volumes and thresholds in the milliampere range,” Appl. Phys. Lett.90(9), 091113 (2007).
[CrossRef]

J. A. Fan, M. A. Belkin, F. Capasso, S. P. Khanna, M. Lachab, A. G. Davies, and E. H. Linfield, “Wide-ridge metal-metal terahertz quantum cascade lasers with high-order lateral mode suppression,” Appl. Phys. Lett.92(3), 031106 (2008).

W. Maineult, P. Gellie, A. Andronico, P. Filloux, G. Leo, C. Sirtori, S. Barbieri, E. Peytavit, T. Akalin, J.-F. Lampin, H. E. Beere, and D. A. Ritchie, “Metal-metal terahertz quantum cascade laser with micro-transverse-electromagnetic-horn antenna,” Appl. Phys. Lett.93(18), 183508 (2008).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, “Terahertz quantum-cascade laser at λ≈ 100 μm using metal waveguide for mode confinement,” Appl. Phys. Lett.83(11), 2124–2126 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Fathololoumi, E. Dupont, D. Ban, M. Graf, S. R. Laframboise, Z. R. Wasilewski, and H. C. Liu, “Time resolved thermal quenching of THz quantum cascade lasers,” IEEE J. Quantum Electron.46(3), 396–404 (2010).
[CrossRef]

J. Appl. Phys. (5)

O. K. Kim and W. G. Spitzer, “Infrared reflectivity spectra and Raman spectra of Ga1-xAlxAs mixed crystals,” J. Appl. Phys.50(6), 4362–4370 (1979).
[CrossRef]

P. Gellie, W. Maineult, A. Andronico, G. Leo, C. Sirtori, S. Barbieri, Y. Chassagneux, J. R. Coudevylle, R. Colombelli, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Effect of transverse mode structure on the far field pattern of metal-metal terahertz quantum cascade lasers,” J. Appl. Phys.104(12), 124513 (2008).
[CrossRef]

S. Kohen, B. S. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys.97(5), 053106 (2005).
[CrossRef]

E. Dupont, S. Fathololoumi, Z. R. Wasilewski, G. Aers, S. R. Laframboise, M. Lindskog, S. G. Razavipour, A. Wacker, D. Ban, and H. C. Liu, “A phonon scattering assisted injection and extraction based terahertz quantum cascade laser,” J. Appl. Phys.111(7), 073111 (2012).
[CrossRef]

S. G. Razavipour, E. Dupont, S. Fathololoumi, C. W. I. Chan, M. Lindskog, Z. R. Wasilewski, G. Aers, S. R. Laframboise, A. Wacker, Q. Hu, D. Ban, and H. C. Liu, “An indirectly pumped terahertz quantum cascade laser with low injection coupling strength operating above 150 K,” J. Appl. Phys.113(20), 203107 (2013).
[CrossRef]

J. Electron. Mater. (1)

V. W. L. Chin, T. Osotchan, M. R. Vaughan, T. L. Tansley, G. J. Griffiths, and Z. Kachwalla, “Hall and drift mobilities in molecular beam epitaxial grown GaAs,” J. Electron. Mater.22(11), 1317–1321 (1993).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. Ban, M. Wächter, H. C. Liu, Z. R. Wasilewski, M. Buchanan, and G. C. Aers, “Terahertz quantum cascade lasers: fabrication, characterization and doping effect,” J. Vac. Sci. Technol. A24(3), 778–782 (2006).
[CrossRef]

Nature (1)

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature417(6885), 156–159 (2002).
[CrossRef] [PubMed]

Opt. Express (3)

Photonics Technol. Lett. (1)

S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, “Ridge-width dependence on high tepmerature continuous-wave quantum-cascade laser operation,” Photonics Technol. Lett.16(3), 744–746 (2004).
[CrossRef]

Semicond. Sci. Technol. (2)

S. Fathololoumi, E. Dupont, S. G. Razavipour, S. R. Laframboise, G. Parent, Z. R. Wasilewski, H. C. Liu, and D. Ban, “On metal contacts of terahertz quantum cascade lasers with a metal-metal waveguide,” Semicond. Sci. Technol.26(10), 105021 (2011).
[CrossRef]

Q. Hu, B. S. Williams, S. Kumar, H. Callebaut, S. Kohen, and J. L. Reno, “Resonant-phonon assisted THz quantum-cascade lasers with metal-metal waveguides,” Semicond. Sci. Technol.20(7), S228–S236 (2005).
[CrossRef]

Other (1)

D. R. Lide, “Electrical resistivity of pure metals,” in CRC Handbook of Chemistry and Physics, 88th ed. (CRC Press, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic diagram of the cross section of fabricated THz QCLs with a metal-metal waveguide from three groups of samples (Group A, B, and C). The active regions are based on four wells phonon-photon-phonon design, with thicknesses of ~10 μm. To achieve ohmic contacts, the active regions are sandwiched between a top stack of 100 nm of 3 × 1018 cm−3 n+ GaAs followed by 20 nm of unintentionally doped GaAs spacer for Group A, B, and C and a bottom stack of 8 × 1017/5 × 1018/5 × 1019 cm−3 n+ GaAs layers with thicknesses of 40/50/10 nm for Group A and B, and of 5.2 × 1017/5 × 1018/5 × 1019 cm−3 n+ GaAs layers with thicknesses of 40/50/10 nm for Group C. Metal cladding layers are deposited on both sides of the semiconductor region to form electric contacts. Two side strips of exposed highly doped top contact layer at the longitudinal edges of the top metal cladding are fabricated to suppress higher order transverse modes. (b) Scanning electronic microscope graph focuses at the edge of one THz QCL metal-metal waveguide (top view) shows a side strip with a width of 6.5 μm.

Fig. 2
Fig. 2

Calculated threshold gain of TM00 modes in metal-metal waveguides of THz QCLs with different ridge widths for Group A (a), B (b), and C (c). The TM00 mode threshold gain of waveguides with a fixed side strip width of 6.5 μm increase while shrinking the waveguide ridge widths for all three groups (red curves). However, the calculated threshold gain for waveguides without side strips fabricated are almost independent on waveguide ridge width (blue dashed curves). Measured threshold current densities from light-current experiments for Group A, B, and C are shown as circles in the (a), (b), and (c). The elevated threshold current densities in waveguides with narrower ridge widths for all three group of devices are in good agreement with the trend of the curve of calculated threshold gain vs. waveguide ridge width. Measured LIV curves, with the waveguide ridge widths and cold finger temperatures, for Groups A, B, and C are shown in (d), (e), and (f), respectively.

Fig. 3
Fig. 3

Measured maximum lasing temperatures of Group A, B, and C of THz QCLs with different waveguide ridge widths as denoted by discrete symbols, respectively (red squares: Group A, blue circles: Group B, and green triangles: Group C). The experimental results show a significant degradation of temperature performance (Tmax) of THz QCLs caused by shrinking waveguide ridge width: Tmax drops 18/26/18 K with waveguide ridge width decreasing from ~141 μm to ~81 μm in devices of Group A/B/C. Calculated Tmax of three groups of QCLs are presented in colored curves (red: Group A, blue: Group B, and green: Group C). The calculated Tmax of THz QCLs various ridge widths shows relatively good agreement with the experimental trend despite discrepancies in the exact values of Tmax, which might be attributed to the inaccuracy of the models used for optical gain and waveguide loss, as well as waveguide imperfections in the fabricated devices.

Fig. 4
Fig. 4

(a) Calculated waveguide loss of TM00, TM01, and TM02 modes as a functions of side strip width of THz QCLs (with layer thickness and doping concentrations same as those from Group C QCLs) are presented. The waveguide ridge width is fixed to 80 μm. (b) Two dimensional lateral modes distributions of TM01 modes (as a sample of all transverse modes) inside the waveguides with a fixed ridge width of 80 μm and various side strip widths of 1 μm and 2.5 μm. At a side strip of 2.5 μm, the mode leakage at side strips region is displayed. (c) Calculated contour map of TM00 to TM01 mode suppression of Group C device with various ridge widths and strip widths. The purple curves show the mode suppression (logarithmic ratio of threshold gain) of 1 dB, 2 dB, 3 dB, and 4 dB.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε(ω,T)= ε GaAs (ω,T)i σ(ω,T) ω ε 0
ε GaAs = ε + 4πρ ω t 2 ω t 2 ω 2 iωY

Metrics