Abstract

The longitudinal multi-mode emission in a vertical-external-cavity surface-emitting laser is investigated using both single shot streak camera measurements and interferometric measurement techniques. For this, the laser is operated in the single- and two-color emission regime using both an etalon and a free-running configuration without etalon, respectively. The laser emission is analyzed with respect to pump power and output coupling losses for a long and for a short resonator. We observe a steep increase of emission bandwidth close to the laser threshold and monitor the transition between longitudinal single- and multi-mode operation. Additionally, the results indicate that a stable two-color operation is related to a sufficiently high number of oscillating longitudinal modes within each color.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
    [CrossRef]
  2. A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
    [CrossRef]
  3. A. C. Tropper and S. Hoogland, “Extended cavity surface-emitting semiconductor lasers,” Prog. Quantum Electron.30(1), 1–43 (2006).
    [CrossRef]
  4. L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
    [CrossRef]
  5. L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
    [CrossRef]
  6. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
    [CrossRef] [PubMed]
  7. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
    [CrossRef]
  8. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
    [CrossRef]
  9. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
    [CrossRef]
  10. M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
    [CrossRef]
  11. B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
    [CrossRef] [PubMed]
  12. S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
    [CrossRef]
  13. S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
    [CrossRef]
  14. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
    [CrossRef]
  15. A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
    [CrossRef]
  16. M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
    [CrossRef]
  17. D. J. Stothard, J. M. Hopkins, D. Burns, and M. H. Dunn, “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL),” Opt. Express17(13), 10648–10658 (2009).
    [CrossRef] [PubMed]
  18. A. Härkönen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, and O. G. Okhotnikov, “High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm,” Opt. Express15(6), 3224–3229 (2007).
    [CrossRef] [PubMed]
  19. M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett.37(1), 25–27 (2012).
    [CrossRef] [PubMed]
  20. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
    [CrossRef] [PubMed]
  21. A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
    [CrossRef]
  22. A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: Non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
    [CrossRef] [PubMed]
  23. C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
    [CrossRef]

2013 (1)

2012 (5)

M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett.37(1), 25–27 (2012).
[CrossRef] [PubMed]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

2011 (3)

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (1)

2007 (3)

2006 (3)

A. C. Tropper and S. Hoogland, “Extended cavity surface-emitting semiconductor lasers,” Prog. Quantum Electron.30(1), 1–43 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

2005 (1)

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

2004 (1)

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

2002 (2)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

1997 (1)

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

1963 (1)

C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
[CrossRef]

Ambacher, O.

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Bedford, R.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

Beere, H. E.

Burns, D.

Chatterjee, S.

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

Chernikov, A.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

DeMars, G.

C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
[CrossRef]

Dion, J.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Domenech, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Dunn, M. H.

Fallahi, M.

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Fan, L.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Foreman, H. D.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

Garnache, A.

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: Non-linear multimode temporal dynamics and quantum limit,” Opt. Express15(15), 9403–9417 (2007).
[CrossRef] [PubMed]

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Georges, P.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Guina, M.

Hader, J.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Häring, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

Härkönen, A.

Heinen, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Herrmann, J.

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

Hoogland, S.

A. C. Tropper and S. Hoogland, “Extended cavity surface-emitting semiconductor lasers,” Prog. Quantum Electron.30(1), 1–43 (2006).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Hoogland, S. H.

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

Hopkins, J. M.

Jacquemet, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Kaneda, Y.

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

Kaspar, S.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Keller, U.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

Koch, M.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

Koch, S. W.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett.37(1), 25–27 (2012).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Köhler, K.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Kolesik, M.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Konttinen, J.

Kunert, B.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Lucas-Leclin, G.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Manz, C.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Moloney, J. V.

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett.37(1), 25–27 (2012).
[CrossRef] [PubMed]

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Murray, J. T.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Okhotnikov, O. G.

Orsila, L.

Ouvrard, A.

Paschotta, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

Pessa, M.

Peyghambarian, N.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Qiu, T.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Rattunde, M.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Rautiainen, J.

Ritchie, D. A.

Roberts, J. S.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Romanini, D.

Rosener, B.

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Rösener, B.

Sagnes, I.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Saint-Girons, G.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Scheller, M.

M. Scheller, S. W. Koch, and J. V. Moloney, “Grating-based wavelength control of single- and two-color vertical-external-cavity-surface-emitting lasers,” Opt. Lett.37(1), 25–27 (2012).
[CrossRef] [PubMed]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

Schülzgen, A.

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Shakfa, M. K.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

Sparenberg, M.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

Statz, H.

C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
[CrossRef]

Stolz, W.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Stothard, D. J.

Strassner, M.

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Tang, C. L.

C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
[CrossRef]

Töpper, T.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Tropper, A. C.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

A. C. Tropper and S. Hoogland, “Extended cavity surface-emitting semiconductor lasers,” Prog. Quantum Electron.30(1), 1–43 (2006).
[CrossRef]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

Tuomisto, P.

Wagner, J.

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

B. Rösener, S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “2 μm semiconductor disk laser with a heterodyne linewidth below 10 kHz,” Opt. Lett.36(18), 3587–3589 (2011).
[CrossRef] [PubMed]

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

Wang, T. L.

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

Wang, T.-L.

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Weber, A.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

Wichmann, M.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

Wilcox, K. G.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express21(2), 1599–1605 (2013).
[CrossRef] [PubMed]

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

Yarborough, J. M.

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express18(26), 27112–27117 (2010).
[CrossRef] [PubMed]

Zakharian, A. R.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

Appl. Phys. B (1)

M. Jacquemet, M. Domenech, G. Lucas-Leclin, P. Georges, J. Dion, M. Strassner, I. Sagnes, and A. Garnache, “Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003 nm and 501 nm by intracavity frequency doubling,” Appl. Phys. B86(3), 503–510 (2007).
[CrossRef]

Appl. Phys. B Lasers Opt. (1)

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulse-shaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B Lasers Opt.75(4–5), 445–451 (2002).
[CrossRef]

Appl. Phys. Lett. (5)

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett.80(21), 3892 (2002).
[CrossRef]

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.88(2), 021105 (2006).
[CrossRef]

L. Fan, M. Fallahi, J. Hader, A. R. Zakharian, M. Kolesik, J. V. Moloney, T. Qiu, A. Schülzgen, N. Peyghambarian, W. Stolz, S. W. Koch, and J. T. Murray, “Over 3 W high-efficiency vertical-external-cavity surface-emitting lasers and application as efficient fiber laser pump sources,” Appl. Phys. Lett.86(21), 211116 (2005).
[CrossRef]

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett.100(4), 041114 (2012).
[CrossRef]

S. Kaspar, M. Rattunde, T. Töpper, C. Manz, K. Köhler, and J. Wagner, “Semiconductor disk laser at 2.05 μm wavelength with <100 kHz linewidth at 1 W output power,” Appl. Phys. Lett.100(3), 031109 (2012).
[CrossRef]

Electron. Lett. (2)

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett.48(9), 516–517 (2012).
[CrossRef]

M. Scheller, T.-L. Wang, B. Kunert, W. Stolz, S. W. Koch, and J. V. Moloney, “Passively modelocked VECSEL emitting 682 fs pulses with 5.1 W of average output power,” Electron. Lett.48(10), 588–589 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Chernikov, J. Herrmann, M. Koch, B. Kunert, W. Stolz, S. Chatterjee, S. W. Koch, T. L. Wang, Y. Kaneda, J. M. Yarborough, J. Hader, and J. V. Moloney, “Heat management in high-power vertical-external-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron.17(6), 1772–1778 (2011).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

S. Kaspar, B. Rosener, M. Rattunde, T. Töpper, C. Manz, K. Köhler, O. Ambacher, and J. Wagner, “Sub-MHz-Linewidth 200-mW actively stabilized 2.3-μm semiconductor disk laser,” IEEE Photonics Technol. Lett.23(20), 1538–1540 (2011).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams,” IEEE Photonics Technol. Lett.9(8), 1063–1065 (1997).
[CrossRef]

J. Appl. Phys. (1)

C. L. Tang, H. Statz, and G. DeMars, “Spectral output and spiking behavior of solid-state lasers,” J. Appl. Phys.34(8), 2289–2295 (1963).
[CrossRef]

J. Phys. D Appl. Phys. (1)

A. C. Tropper, H. D. Foreman, A. Garnache, K. G. Wilcox, and S. H. Hoogland, “Vertical-external-cavity semiconductor lasers,” J. Phys. D Appl. Phys.37(9), R75–R85 (2004).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rep. (1)

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep.429(2), 67–120 (2006).
[CrossRef]

Prog. Quantum Electron. (1)

A. C. Tropper and S. Hoogland, “Extended cavity surface-emitting semiconductor lasers,” Prog. Quantum Electron.30(1), 1–43 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic drawings of two VECSEL setups used for the characterization of the laser emission. (a) depicts a long cavity with a total length of 51 cm which results in a free spectral range (FSR) of 0.3 GHz. (b) shows a short cavity with a total length of 1.5 cm and a FSR of 10 GHz.

Fig. 2
Fig. 2

(a) Exemplary interference pattern for the case of two-color operation employing the long cavity with a length of 51 cm. A magnified section is shown in the upper right inset. In this, a clear beating between the two lasing intensities is noted. A further magnification is shown in the lower right corner in which the single interference fringes are resolved. (b) Exemplary streak camera image using a time window of 10 µs.

Fig. 3
Fig. 3

Interferometric measurements for the cavity with a length of 51 cm using three different output couplers. The upper row shows the laser curves whereas the lower row depicts the corresponding emission bandwidth (left vertical axis) as well as the normalized bandwidth (right vertical axis).

Fig. 4
Fig. 4

Two-color emission dynamics for the cavity with a length of 51 cm using the HR plane end mirror. (a) shows the intra-cavity power as function of the effective pump power. (b) depicts the 2σ-interval, i.e. the width of the ΔI12-distribution as function of the effective pump power. The region in which a stable two-color emission is observed is highlighted in green.

Fig. 5
Fig. 5

Interferometric measurements for the cavity with a length of 1.5 cm. (a1) and (a2) show the laser curve, the emission bandwidth as well as the normalized bandwidth for the case of single color emission. Subfigures (b1, b2) and (c1, c2) depict the respective quantities for the case of two-color operation and the free-running configuration, respectively. Due to unstable emission conditions, the bandwidth for a pump power of 7.9 W (b2) cannot be determined. The dashed lines indicate the lower detection limit. In the grey highlighted regions the laser operates in a higher order transverse mode.

Fig. 6
Fig. 6

Two-color emission dynamics for the cavity with a length of 1.5 cm. (a) shows the intra-cavity power as a function of the effective pump power. The highlighted grey region corresponds to a higher transverse mode operation. At high pump power the beginning of thermal roll-over is noted. (b) depicts the 2σ-interval in dependence of the effective pump power. The inset in (b) shows a magnification of the encased area.

Fig. 7
Fig. 7

Numerical simulations of the random mode intensity fluctuations. The figure shows the strength of relative intensity fluctuations (expressed in terms of the 2σ-value) in dependence of the number of oscillating longitudinal modes. The small subfigures show exemplary ΔI12-distributions for one mode per color (1), ten modes per color (2) and one hundred modes per color (3), respectively.

Metrics