Abstract

Simple diffraction structures having the form of a regular grid of pillars can generate a significant range of hues in white light transmission due to color-dependent diffraction into higher orders. We present the fabrication of such submicrometer scale structures by three dimensional laser two-photon photolithography, results of their optical properties measurements and compare the latter with numerical simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Knop, “Diffraction gratings for color filtering in the zero diffraction order,” Appl. Opt.17(22), 3598–3603 (1978).
    [CrossRef] [PubMed]
  2. K. Knop, “Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves,” J. Opt. Soc. Am.68(9), 1206–1210 (1978).
    [CrossRef]
  3. H. Dammann, “Color separation gratings,” Appl. Opt.17(15), 2273–2279 (1978).
    [CrossRef] [PubMed]
  4. Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
    [CrossRef]
  5. Y.-T. Yoon, H.-S. Lee, S.-S. Lee, S. H. Kim, J.-D. Park, and K.-D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Opt. Express16(4), 2374–2380 (2008).
    [CrossRef] [PubMed]
  6. B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
    [CrossRef]
  7. E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
    [CrossRef] [PubMed]
  8. H.-S. Lee, Y.-T. Yoon, S.-S. Lee, S.-H. Kim, and K.-D. Lee, “Color filter based on a subwavelength patterned metal grating,” Opt. Express15(23), 15457–15463 (2007).
    [CrossRef] [PubMed]
  9. Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt.48(27), 5035–5039 (2009).
    [CrossRef] [PubMed]
  10. H. Lochbihler, “Colored images generated by metallic sub-wavelength gratings,” Opt. Express17(14), 12189–12196 (2009).
    [CrossRef] [PubMed]
  11. Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
    [CrossRef]
  12. Q. Chen and D. R. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express18(13), 14056–14062 (2010).
    [CrossRef] [PubMed]
  13. N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
    [CrossRef]
  14. Y. Chen and W. Liu, “Design and analysis of multilayered structures with metal-dielectric gratings for reflection resonance and color generation,” Opt. Lett.37(1), 4–6 (2012).
    [CrossRef] [PubMed]
  15. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
    [CrossRef] [PubMed]
  16. P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
    [CrossRef] [PubMed]
  17. M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
    [CrossRef] [PubMed]
  18. H. Lochbihler, “Reflective colored image based on metal-dielectric-metal-coated gratings,” Opt. Lett.38(9), 1398–1400 (2013).
    [CrossRef] [PubMed]
  19. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett.22, 132–134 (1997).
  20. M. S. Rill, “Three-dimensional photonic metamaterials by direct laser writing and advanced metallization techniques,” PhD dissertation (Karlsruher Institut für Technologie, 2010), Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614 .
  21. H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Acutators A83, 130–135 (2000).
  22. K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
    [CrossRef]
  23. H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
    [CrossRef]
  24. Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express21(1), 322–328 (2013).
    [CrossRef] [PubMed]

2013

2012

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Y. Chen and W. Liu, “Design and analysis of multilayered structures with metal-dielectric gratings for reflection resonance and color generation,” Opt. Lett.37(1), 4–6 (2012).
[CrossRef] [PubMed]

2011

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

2010

2009

2008

2007

2006

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

2002

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

2000

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Acutators A83, 130–135 (2000).

1997

1978

Abedzadeh, N.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Ahn, C. H.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Anttu, N.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Becker, H.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Acutators A83, 130–135 (2000).

Chen, L.

Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt.48(27), 5035–5039 (2009).
[CrossRef] [PubMed]

Chen, Q.

Chen, Y.

Chen, Y.-B.

N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Cheong, B.-H.

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, E.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Cho, E.-H.

Cho, Y.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Choi, H.-Y.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Cumming, D. R.

Dammann, H.

Dan, Y.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

David, C.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Desta, Y.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Ellenbogen, T.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Gabriel, M.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Gobrecht, J.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Hane, K.

Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express21(1), 322–328 (2013).
[CrossRef] [PubMed]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Heim, U.

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Acutators A83, 130–135 (2000).

Heyderman, L. J.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Kaiser, W.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Kanamori, Y.

Y. Kanamori, M. Okochi, and K. Hane, “Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography,” Opt. Express21(1), 322–328 (2013).
[CrossRef] [PubMed]

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Kawata, S.

Khorasaninejad, M.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Kim, H.-S.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

E.-H. Cho, H.-S. Kim, B.-H. Cheong, O. Prudnikov, W. Xianyua, J.-S. Sohn, D.-J. Ma, H.-Y. Choi, N. C. Park, and Y. P. Park, “Two-dimensional photonic crystal color filter development,” Opt. Express17(10), 8621–8629 (2009).
[CrossRef] [PubMed]

Kim, K.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Kim, S. H.

Kim, S.-H.

Knop, K.

Koppel, S.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Lee, H.-S.

Lee, J.-B.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Lee, K.-D.

Lee, S.-S.

Liu, W.

Lo, Y.-L.

N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Lochbihler, H.

Ma, D.-J.

Manohara, H.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Maruo, S.

Murphy, M.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Nakamura, O.

Nguyen-Huu, N.

N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Okochi, M.

Park, J.-D.

Park, N. C.

Park, S.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Park, Y. P.

Patchett, S.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Pistol, M.-E.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Prudnikov, O.

Prudnikov, O. N.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Saini, S. S.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Samuelson, L.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Scandella, L.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Schift, H.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Seo, K.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Shimono, M.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

Shin, S. T.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Sohn, J.-S.

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Walia, J.

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Wober, M.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

Wu, P. M.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Xianyua, W.

Xu, H. Q.

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

Ye, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt.48(27), 5035–5039 (2009).
[CrossRef] [PubMed]

Yoon, Y.-T.

Yu, J.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

Zhang, H.

Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
[CrossRef]

Zhou, Y.

Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
[CrossRef]

Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt.48(27), 5035–5039 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

B.-H. Cheong, O. N. Prudnikov, E. Cho, H.-S. Kim, J. Yu, Y.-S. Cho, H.-Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength grating,” Appl. Phys. Lett.94(21), 213104 (2009).
[CrossRef]

IEEE Photonics Technol. Lett.

Y. Kanamori, M. Shimono, and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrates,” IEEE Photonics Technol. Lett.18(20), 2126–2128 (2006).
[CrossRef]

J. Opt. Soc. Am.

Microelectron. Eng.

H. Schift, C. David, M. Gabriel, J. Gobrecht, L. J. Heyderman, W. Kaiser, S. Koppel, and L. Scandella, “Nanoreplication in polymers using hot embossing and injection molding,” Microelectron. Eng.53(1–4), 171–174 (2000).
[CrossRef]

Microsyst. Technol.

K. Kim, S. Park, J.-B. Lee, H. Manohara, Y. Desta, M. Murphy, and C. H. Ahn, “Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology,” Microsyst. Technol.9(1-2), 5–10 (2002).
[CrossRef]

Nano Lett.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett.11(4), 1851–1856 (2011).
[CrossRef] [PubMed]

P. M. Wu, N. Anttu, H. Q. Xu, L. Samuelson, and M.-E. Pistol, “Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning,” Nano Lett.12(4), 1990–1995 (2012).
[CrossRef] [PubMed]

M. Khorasaninejad, N. Abedzadeh, J. Walia, S. Patchett, and S. S. Saini, “Color matrix refractive index sensors using coupled vertical silicon nanowire arrays,” Nano Lett.12(8), 4228–4234 (2012).
[CrossRef] [PubMed]

Opt. Commun.

Y. Ye, H. Zhang, Y. Zhou, and L. Chen, “Color filter based on a submicrometer cascaded grating,” Opt. Commun.283(4), 613–616 (2010).
[CrossRef]

N. Nguyen-Huu, Y.-L. Lo, and Y.-B. Chen, “Color filters featuring high transmission efficiency and broad bandwidth based on resonant waveguide-metallic grating,” Opt. Commun.284(10-11), 2473–2479 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Acutators A

H. Becker and U. Heim, “Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. Acutators A83, 130–135 (2000).

Other

M. S. Rill, “Three-dimensional photonic metamaterials by direct laser writing and advanced metallization techniques,” PhD dissertation (Karlsruher Institut für Technologie, 2010), Chap. 3, http://digbib.ubka.uni-karlsruhe.de/volltexte/1000018614 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM image of the pillar grating with the grid spacing d = 1000 nm. More than 1.4 thousand of 1.5 micron high polymer micropillars cover the 38x38 μm2 area. Inset shows an oblique view of the structure (a). Simplified geometry of the structure used in calculations (black outlines) superimposed on a typical pillar shapes as recorded in the SEM images (grey) (b). The scale bar in (a) is 10 μm long.

Fig. 2
Fig. 2

White light transmission micrograph showing a range of colours available for the pillar-type gratings. The pillar height varies from 1.0 to 2.4 µm (collumns) for the grid spacing equal 1.0, 1.1, 1.2, and 1.3 µm (rows). The color balance of the picture has been adjusted to give the white background and several imperfaction have been manually removed from the areas between the structures. Grey outlines mark the three filters used for further measurements.

Fig. 3
Fig. 3

Transmission spectra measured for three filters corresponding to red (h = 2.0 μm, d = 1.1 μm), green (h = 1.6 μm, d = 1.1 μm) and blue (h = 1.2 μm, d = 1.1 μm) filters – curve colors correspond to the respective filter color (a). Calculated transmission for the three filters (b).

Fig. 4
Fig. 4

Far field diffraction patterns measured for the red, green and blue filters (the same as in Fig. 3) – rows. The images have been measured with passband filters of 10 nm width, centered at the three wavelengths indicated for the columns. The images span ± 42 degree field from the normal incidence axis.

Fig. 5
Fig. 5

Color values for the filters presented in Fig. 2 retrieved from the measured transmission spectra, plotted onto the CIE-1931 chromaticity diagram. The red, green and blue filters are shown in the inset and indicated by the corresponding color spots (a). Transmission micrograph of a patterned filter made of five different colors. The color balance of the picture has been adjusted to give the white background (b). The scale bar is 15 μm long.

Metrics