Abstract

We show characterization of stimulated Brillouin scattering (SBS) in a circular-core two-mode fiber (c-TMF) using Brillouin optical time-domain analysis (BOTDA) with a pulsed pump and a counter-propagating continuous wave probe. By using two free-space mode combiners (FSMCs), we can launch any combination of spatial modes into both ends of the c-TMF. Combined with coherent detection, measurement of distributed Brillouin gain spectra (BGS) is achieved for all possible counter-propagating spatial mode pairs with high spectral resolution and stability. Both intra- and inter-modal SBS are investigated for the c-TMF. The inter-modal SBS between two degenerate LP11 modes (LP11a/LP11b) is demonstrated for the first time. From the Brillouin frequency shift (BFS) measured in each intra-modal SBS, the distributed modal birefringence between non-degenerate modes (LP01/LP11) and degenerate LP11 modes is obtained. The proposed setup can potentially be used as a c-TMF based distributed Brillouin sensor.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express13(19), 7527–7534 (2005).
    [CrossRef] [PubMed]
  2. W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express16(9), 6378–6386 (2008).
    [CrossRef] [PubMed]
  3. T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM Transmission over 720 km with a 14 bit/s/Hz Spectral Efficiency Using an Improved FDE Technique,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2013, paper OTh4E.1.
    [CrossRef]
  4. P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
    [CrossRef] [PubMed]
  5. R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28(4), 662–701 (2010).
    [CrossRef]
  6. J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber,” J. Lightwave Technol.31(4), 554–562 (2013).
    [CrossRef]
  7. S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
    [CrossRef] [PubMed]
  8. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011).
    [CrossRef] [PubMed]
  9. A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of Dual-Spatial-Mode CO-OFDM Signal Over a Two-Mode Fiber,” J. Lightwave Technol.30(4), 634–640 (2012).
    [CrossRef]
  10. C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express19(17), 16593–16600 (2011).
    [CrossRef] [PubMed]
  11. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
    [CrossRef] [PubMed]
  12. A. Li, J. Ye, X. Chen, and W. Shieh, “low loss fused mode coupler for few-mode transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2013, paper OTu3G.
    [CrossRef]
  13. Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express19(26), B952–B957 (2011).
    [CrossRef] [PubMed]
  14. N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
    [CrossRef] [PubMed]
  15. A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-Division Multiplexed High-Speed Superchannel Transmission Over Few-Mode Fiber,” J. Lightwave Technol.30(24), 3953–3964 (2012).
    [CrossRef]
  16. L. Gruner-Nielsen, S. Yi, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Palsdottir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol.30(23), 3693–3698 (2012).
    [CrossRef]
  17. P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions,” in 37th European Conference and Exposition on Optical Communications (ECOC), paper Tu.5.LeCervin.7.
  18. T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).
  19. T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
    [CrossRef]
  20. P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
    [CrossRef]
  21. K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett.38(11), 1805–1807 (2013).
    [CrossRef] [PubMed]
  22. S. Li, M.-J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett.37(22), 4660–4662 (2012).
    [CrossRef] [PubMed]
  23. I. Bongrand, C. Montes, E. Picholle, J. Botineau, A. Picozzi, G. Cheval, and D. Bahloul, “Soliton compression in Brillouin fiber lasers,” Opt. Lett.26(19), 1475–1477 (2001).
    [CrossRef] [PubMed]
  24. L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
    [CrossRef]
  25. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, “All-fiber acousto-optic frequency shifter,” Opt. Lett.11(6), 389–391 (1986).
    [CrossRef] [PubMed]
  26. H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All fiber wavelength-tunable acousto-optic switches based on intermodal coupling in fibers,” J. Lightwave Technol.20(10), 1864–1868 (2002).
    [CrossRef]

2013

2012

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
[CrossRef] [PubMed]

N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
[CrossRef] [PubMed]

A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of Dual-Spatial-Mode CO-OFDM Signal Over a Two-Mode Fiber,” J. Lightwave Technol.30(4), 634–640 (2012).
[CrossRef]

S. Li, M.-J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett.37(22), 4660–4662 (2012).
[CrossRef] [PubMed]

L. Gruner-Nielsen, S. Yi, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Palsdottir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol.30(23), 3693–3698 (2012).
[CrossRef]

A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-Division Multiplexed High-Speed Superchannel Transmission Over Few-Mode Fiber,” J. Lightwave Technol.30(24), 3953–3964 (2012).
[CrossRef]

2011

2010

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
[CrossRef]

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

2008

2005

2002

2001

I. Bongrand, C. Montes, E. Picholle, J. Botineau, A. Picozzi, G. Cheval, and D. Bahloul, “Soliton compression in Brillouin fiber lasers,” Opt. Lett.26(19), 1475–1477 (2001).
[CrossRef] [PubMed]

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

1993

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

1990

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
[CrossRef]

1989

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

1986

Al Amin, A.

Alam, S.

Amin, A. A.

Astruc, M.

Awaji, Y.

Bahloul, D.

Bai, N.

Bickham, S.

Bigo, S.

Blake, J. N.

Bolle, C. A.

Bongrand, I.

Botineau, J.

Boutin, A.

Brindel, P.

Burrows, E. C.

Cerou, F.

Chandrasekhar, S.

Charlet, G.

Chen, S.

Chen, X.

Cheval, G.

Culverhouse, D.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
[CrossRef]

Dhar, A.

Dimarcello, F. V.

Engan, H. E.

Essiambre, R.

Essiambre, R.-J.

Farahi, F.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
[CrossRef]

Fini, J. M.

Fishteyn, M.

Foschini, G. J.

Furukawa, S.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

Gao, G.

Giles, D.

Giles, I. P.

Gnauck, A. H.

Goebel, B.

Gruner-Nielsen, L.

Grüner-Nielsen, L.

Han, Y.

Horiguchi, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

Huang, Y.-K.

Imamura, K.

Inaba, H.

Ip, E.

Izumita, H.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

Jakobsen, D.

Jespersen, K. G.

Jung, Y.

Kanno, A.

Kawanishi, T.

Kim, B. Y.

Kim, Y. H.

Klaus, W.

Kobayashi, T.

Koebele, C.

Koyamada, Y.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

Kramer, G.

Kurashima, T.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

Lau, A. P. T.

Li, A.

Li, G.

Li, M.-J.

Li, S.

Li, Z.

Liñares, J.

Lingle, R.

Liu, X.

Lu, C.

Luo, Y.

Ma, Y.

Man Chung, K.

Mardoyan, H.

Mateo, E.

McCurdy, A.

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Monberg, E. M.

Montero, C.

Montes, C.

Moreno, V.

Mukasa, K.

Nicholson, J. W.

Palmieri, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
[CrossRef]

Palsdottir, B.

Pan, Y.

Park, H. S.

Peckham, D. W.

Peng, G.-D.

Picholle, E.

Picozzi, A.

Poletti, F.

Prieto, X.

Provost, L.

Puttnam, B. J.

Randel, S.

Richardson, D. J.

Russell, P. St. J.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
[CrossRef]

Ryf, R.

Sahu, J. K.

Sakaguchi, J.

Salsi, M.

Santagiustina, M.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
[CrossRef]

Shaw, H. J.

Shieh, W.

Sierra, A.

Sillard, P.

Song, K. Y.

Sperti, D.

Stark, J. B.

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Sugizaki, R.

Tam, H.-Y.

Tateda, M.

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

Taunay, T. F.

Ten, S.

Tran, P.

Tse, V.

Ursini, L.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
[CrossRef]

Verluise, F.

Vodhanel, R. S.

Wada, N.

Wang, T.

Watanabe, M.

Winzer, P. J.

Yaman, F.

Yan, M. F.

Yang, Q.

Ye, J.

Yi, S.

Yun, S. H.

Zhu, B.

Electron. Lett.

P. St. J. Russell, D. Culverhouse, and F. Farahi, “Experimental observation of forward stimulated Brillouin scattering in dual-mode single-core fibre,” Electron. Lett.26(15), 1195–1196 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

L. Ursini, M. Santagiustina, and L. Palmieri, “Polarization-Dependent Brillouin Gain in Randomly Birefringent Fibers,” IEEE Photon. Technol. Lett.22(10), 712–714 (2010).
[CrossRef]

IEICE Trans. Commun.

T. Kurashima, T. Horiguchi, H. Izumita, S. Furukawa, and Y. Koyamada, “Brillouin Optical-Fiber Time Domain Reflectometry,” IEICE Trans. Commun.E76-B(4), 382–390 (1993).

J. Lightwave Technol.

T. Horiguchi and M. Tateda, “BOTDA-nondestructive measurement of single-mode optical fiber attenuation characteristics using Brillouin interaction: theory,” J. Lightwave Technol.7(8), 1170–1176 (1989).
[CrossRef]

R. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity Limits of Optical Fiber Networks,” J. Lightwave Technol.28(4), 662–701 (2010).
[CrossRef]

H. S. Park, K. Y. Song, S. H. Yun, and B. Y. Kim, “All fiber wavelength-tunable acousto-optic switches based on intermodal coupling in fibers,” J. Lightwave Technol.20(10), 1864–1868 (2002).
[CrossRef]

A. Li, A. A. Amin, X. Chen, S. Chen, G. Gao, and W. Shieh, “Reception of Dual-Spatial-Mode CO-OFDM Signal Over a Two-Mode Fiber,” J. Lightwave Technol.30(4), 634–640 (2012).
[CrossRef]

L. Gruner-Nielsen, S. Yi, J. W. Nicholson, D. Jakobsen, K. G. Jespersen, R. Lingle, and B. Palsdottir, “Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss,” J. Lightwave Technol.30(23), 3693–3698 (2012).
[CrossRef]

A. Li, X. Chen, A. Al Amin, J. Ye, and W. Shieh, “Space-Division Multiplexed High-Speed Superchannel Transmission Over Few-Mode Fiber,” J. Lightwave Technol.30(24), 3953–3964 (2012).
[CrossRef]

J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi, and M. Watanabe, “305 Tb/s Space Division Multiplexed Transmission Using Homogeneous 19-Core Fiber,” J. Lightwave Technol.31(4), 554–562 (2013).
[CrossRef]

Nature

P. P. Mitra and J. B. Stark, “Nonlinear limits to the information capacity of optical fibre communications,” Nature411(6841), 1027–1030 (2001).
[CrossRef] [PubMed]

Opt. Express

Y. Han and G. Li, “Coherent optical communication using polarization multiple-input-multiple-output,” Opt. Express13(19), 7527–7534 (2005).
[CrossRef] [PubMed]

W. Shieh, Q. Yang, and Y. Ma, “107 Gb/s coherent optical OFDM transmission over 1000-km SSMF fiber using orthogonal band multiplexing,” Opt. Express16(9), 6378–6386 (2008).
[CrossRef] [PubMed]

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Transmission of 107-Gb/s mode and polarization multiplexed CO-OFDM signal over a two-mode fiber,” Opt. Express19(9), 8808–8814 (2011).
[CrossRef] [PubMed]

C. Koebele, M. Salsi, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Two mode transmission at 2×100 Gb/s, over 40 km-long prototype few-mode fiber, using LCOS-based programmable mode multiplexer and demultiplexer,” Opt. Express19(17), 16593–16600 (2011).
[CrossRef] [PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express19(17), 16697–16707 (2011).
[CrossRef] [PubMed]

Y. Jung, S. Alam, Z. Li, A. Dhar, D. Giles, I. P. Giles, J. K. Sahu, F. Poletti, L. Grüner-Nielsen, and D. J. Richardson, “First demonstration and detailed characterization of a multimode amplifier for space division multiplexed transmission systems,” Opt. Express19(26), B952–B957 (2011).
[CrossRef] [PubMed]

S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, T. F. Taunay, B. Zhu, M. Fishteyn, M. F. Yan, J. M. Fini, E. M. Monberg, and F. V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” Opt. Express20(2), 706–711 (2012).
[CrossRef] [PubMed]

N. Bai, E. Ip, Y.-K. Huang, E. Mateo, F. Yaman, M.-J. Li, S. Bickham, S. Ten, J. Liñares, C. Montero, V. Moreno, X. Prieto, V. Tse, K. Man Chung, A. P. T. Lau, H.-Y. Tam, C. Lu, Y. Luo, G.-D. Peng, G. Li, and T. Wang, “Mode-division multiplexed transmission with inline few-mode fiber amplifier,” Opt. Express20(3), 2668–2680 (2012).
[CrossRef] [PubMed]

Opt. Lett.

Other

T. Omiya, M. Yoshida, and M. Nakazawa, “400 Gbit/s 256 QAM-OFDM Transmission over 720 km with a 14 bit/s/Hz Spectral Efficiency Using an Improved FDE Technique,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2013, paper OTh4E.1.
[CrossRef]

A. Li, J. Ye, X. Chen, and W. Shieh, “low loss fused mode coupler for few-mode transmission,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (OFC/NFOEC) 2013, paper OTu3G.
[CrossRef]

P. Sillard, M. Astruc, D. Boivin, H. Maerten, and L. Provost, “Few-Mode Fiber for Uncoupled Mode-Division Multiplexing Transmissions,” in 37th European Conference and Exposition on Optical Communications (ECOC), paper Tu.5.LeCervin.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of a 3 × 1 FSMC. The translation stages have two free axes, X and Y (Z is the light propagation direction). BS: 50:50 non-polarizing beamsplitter. The second BS can be removed in case only two modes need to be multiplexed so that it becomes a 2 × 1 FSMC.

Fig. 2
Fig. 2

Experimental setup for the BOTDA measurement of BGS of a 4-km c-TMF. ECL: external-cavity laser; MZM: Mach-Zehnder modulator; EOM: electro-optic modulator; AFG: arbitrary function generator; EDFA: Erbium-doped fiber amplifier; OBPF: optical band-pass filter; PC: polarization controller; OC: optical circulator; MS: mode stripper; MC: mode converter; BR: balanced receiver; TDS: time-domain (sampling) scope; FUT: fiber under test. Insets in the bottom: spectrum of probe signal (i) before OBPF, and (ii) after OBPF.

Fig. 3
Fig. 3

Received probe signal using heterodyne coherent detection. (a) Time-domain trace, (b) probe spectrum measured before pump pulse (w/o. SBS), and (c) probe spectrum measured after pump pulse (w. SBS). The frequency of probe is offset from pump by −10.512 GHz. Pump power = 4.5 mW.

Fig. 4
Fig. 4

Measured power spectral profile of probe by scanning a frequency range of ± 250MHz around 10.5 GHz: (a) spectra without (w/o.) and with SBS for 0-500 m length, and (b) spectra with SBS for 600-1000 m length. Pump: LP01 mode, Probe: LP01 mode. Pump power = 4.5 mW.

Fig. 5
Fig. 5

Measured BGS for LP01-LP01 modes in a c-TMF at (a) 0-500 m length, and (b) 600-1000 m length. Pump: LP01 mode, Probe: LP01 mode. Pump power = 4.5 mW.

Fig. 6
Fig. 6

Measured Brillouin gain for LP01-LP01 modes at the center frequency of BGS (10.513 GHz). Analyzed from 0 to 3 km along the fiber. (a) Pump power = 9 mW, (b) pump power = 4.5 mW. The Brillouin gain decays faster with higher pump power.

Fig. 7
Fig. 7

Measured BGS for LP01-LP11 modes in a c-TMF for varying distances. Pump-probe mode pairs: (a) LP01-LP11a, (b) LP01-LP11b, (c) LP11a-LP11a, and (d) LP11b-LP01. Pump power: (a) 4.5 mW, (b) 4.5 mW, (c) 2.3 mW, and (d) 2.3 mW. The reduced SBS gain in (c) and (d) is due to the 3-dB loss of pump power, which originates from the MS and MC in the LP11 path for mode conversion.

Fig. 8
Fig. 8

Measured BGS for LP11-LP11 modes in a c-TMF for varying distances. Pump-probe mode pairs: (a) LP11a-LP11a, (b) LP11a-LP11b, (c) LP11b-LP11a, and (d) LP11b-LP11b. Pump power: 4.5 mW.

Fig. 9
Fig. 9

Brillouin gain as a function of pump power at 100 m of c-TMF. Pump-probe mode pairs: (a) LP01-LP01, (b) LP01-LP11, (c) LP11-LP01, and (d) LP11-LP11 (including all possible combinations of LP11a and LP11b). The measured gain slope is: 2.38 (LP01-LP01), 1.37 (LP01-LP11a), 1.35 (LP01-LP11b), 1.81 (LP11a-LP01), 1.37 (LP11b-LP01), 1.76 (LP11a-LP11a), 1.16 (LP11a-LP11b), 0.93 (LP11b-LP11a), and 1.12 (LP11b-LP11b), unit: dB/mW.

Fig. 10
Fig. 10

Measured Brillouin frequency shift νB in a c-TMF from 0 to 500 m after Lorentizan curve fitting. Pump-probe mode pairs: (a) LP01-LP01, (b) LP01-LP11, (c) LP11-LP01, and (d) LP11-LP11 (including all possible combinations of LP11a and LP11b).

Fig. 11
Fig. 11

Measured distributed modal birefringence in a c-TMF from 0 to 500 m. The ERI for LP01 mode nLP01 = 1.449788 is calculated from the fiber parameter.

Tables (2)

Tables Icon

Table 1 Parameters for Custom-designed Step-index Two-mode Fiber [8,9]

Tables Icon

Table 2 Characteristics of BGS at 100 m fiber length

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

υ B = 2n V a λ

Metrics