Abstract

This study makes a claim of utilizing the photothermal effect of graphene oxide nanosheets (GONs) to effectively produce various microbubbles in an optical microfiber system at infrared optical communications band. A low power continuous-wave light at wavelength of 1527−1566 nm was launched into the microfiber to form GONs-deposition which acted as a linear heat source for creating various microbubbles. Both thermal convection flow and optical gradient force were responsible for the driving force to assemble GONs onto the microfiber. This simple optical fiber system can be used for assembling other micro/nanoscale particles and biomolecules, which has prospective applications in sensing, microfluidics, virus detection, and other biochip techniques.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov.3(6), 527–533 (2004).
    [CrossRef] [PubMed]
  2. P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
    [CrossRef]
  3. J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
    [CrossRef] [PubMed]
  4. T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
    [CrossRef]
  5. M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
    [CrossRef] [PubMed]
  6. D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
    [CrossRef]
  7. P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A.101(26), 9523–9527 (2004).
    [CrossRef] [PubMed]
  8. L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
    [CrossRef]
  9. A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
    [PubMed]
  10. Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
    [CrossRef] [PubMed]
  11. E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
    [CrossRef] [PubMed]
  12. R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express20(8), 8732–8740 (2012).
    [CrossRef] [PubMed]
  13. W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
    [CrossRef]
  14. K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
    [CrossRef]
  15. P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
    [CrossRef] [PubMed]
  16. K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
    [CrossRef] [PubMed]
  17. Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
    [CrossRef] [PubMed]
  18. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
    [CrossRef] [PubMed]
  19. Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
    [CrossRef] [PubMed]
  20. D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009).
    [CrossRef] [PubMed]
  21. R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
    [CrossRef]
  22. G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
    [CrossRef]
  23. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
    [CrossRef] [PubMed]
  24. K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
    [CrossRef] [PubMed]
  25. J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
    [CrossRef] [PubMed]
  26. B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
    [CrossRef] [PubMed]
  27. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
    [CrossRef] [PubMed]
  28. Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
    [CrossRef] [PubMed]
  29. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  30. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  31. C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
    [CrossRef]
  32. W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
    [CrossRef]
  33. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
    [CrossRef]
  34. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
    [CrossRef]
  35. X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
    [CrossRef] [PubMed]
  36. X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
    [CrossRef] [PubMed]
  37. O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express16(8), 5673–5680 (2008).
    [CrossRef] [PubMed]
  38. B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Opt. Express16(22), 17276–17281 (2008).
    [CrossRef] [PubMed]
  39. P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip11(21), 3710–3715 (2011).
    [CrossRef] [PubMed]
  40. Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
    [CrossRef]
  41. S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
    [CrossRef] [PubMed]
  42. D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).
  43. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett.97(3), 038103 (2006).
    [CrossRef] [PubMed]
  44. W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid.11(3), 307–316 (2011).
    [CrossRef]
  45. A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng.18(11), 115031 (2008).
    [CrossRef]

2012 (5)

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
[CrossRef]

R. Pimentel-Domínguez, J. Hernández-Cordero, and R. Zenit, “Microbubble generation using fiber optic tips coated with nanoparticles,” Opt. Express20(8), 8732–8740 (2012).
[CrossRef] [PubMed]

2011 (11)

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid.11(3), 307–316 (2011).
[CrossRef]

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip11(21), 3710–3715 (2011).
[CrossRef] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
[CrossRef]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

2010 (5)

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

2009 (3)

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

D. Lapotko, “Optical excitation and detection of vapor bubbles around plasmonic nanoparticles,” Opt. Express17(4), 2538–2556 (2009).
[CrossRef] [PubMed]

2008 (6)

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng.18(11), 115031 (2008).
[CrossRef]

O. A. Louchev, S. Juodkazis, N. Murazawa, S. Wada, and H. Misawa, “Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection,” Opt. Express16(8), 5673–5680 (2008).
[CrossRef] [PubMed]

B. K. Wilson, M. Hegg, X. Miao, G. Cao, and L. Y. Lin, “Scalable nano-particle assembly by efficient light-induced concentration and fusion,” Opt. Express16(22), 17276–17281 (2008).
[CrossRef] [PubMed]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

2007 (2)

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

2006 (2)

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett.97(3), 038103 (2006).
[CrossRef] [PubMed]

2005 (1)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

2004 (4)

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
[CrossRef] [PubMed]

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A.101(26), 9523–9527 (2004).
[CrossRef] [PubMed]

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov.3(6), 527–533 (2004).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

2000 (1)

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).

1999 (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

1996 (1)

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

1994 (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Ahmed, D.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

Arsikin, K. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Aykol, M.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Basu, A. S.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng.18(11), 115031 (2008).
[CrossRef]

Bee, R.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

Bell, D. C.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

Berry, D. W.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).

Brambilla, G.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

Braun, D.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett.97(3), 038103 (2006).
[CrossRef] [PubMed]

Buzaneva, E. V.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Cai, F.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Cai, X.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Campbell, P.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Cao, G.

Cao, J.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

Casalongue, H. S.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Chaudhuri, S. K.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

Chen, H.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Chen, J.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Chen, Y.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

Chen, Y.-H.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
[CrossRef] [PubMed]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Chiou, P.-Y.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

Chizhik, S. A.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Chu, H.-Y.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
[CrossRef] [PubMed]

Cronin, S. B.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

Cuschieri, A.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Dai, H.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Deng, C. X.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Dholakia, K.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Dramicanin, M. D.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Dressaire, E.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

Duhr, S.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett.97(3), 038103 (2006).
[CrossRef] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Feng, L.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

Fujii, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Gao, L.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gershenfeld, N.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Gianchandani, Y. B.

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng.18(11), 115031 (2008).
[CrossRef]

Gonzalez-Avila, S. R.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

Gorchinskiy, A. D.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Guo, X.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Guo, Z.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Haga, M. A.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Harhaji-Trajkovic, L. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Heckenberg, N. R.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).

Hegg, M.

Hernández-Cordero, J.

Hilgenfeldt, S.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A.101(26), 9523–9527 (2004).
[CrossRef] [PubMed]

Hsu, H.-Y.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

Hu, W.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
[CrossRef]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid.11(3), 307–316 (2011).
[CrossRef]

Huang, D.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Huang, T. J.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

Huang, W. P.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

Huang, W.-P.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

Huang, X. H.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Hung, W. H.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

i, L.

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
[CrossRef] [PubMed]

Ishii, K. S.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
[CrossRef]

Jamshidi, A.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Jiang, Z.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Jovanovic, S. P.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Juluri, B. K.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

Juodkazis, S.

Kanaizuka, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Kepic, D. P.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Khoo, B. C.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Klaseboer, E.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Kobayashi, K.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Kovtyukhova, N. I.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Lapotko, D.

Lee, S.-T.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Li, B.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
[CrossRef]

Li, Q.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Li, Y.

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
[CrossRef]

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Liang, Y.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Lim, K. Y.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Lin, L. Y.

Lin, M.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Lin, Z.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Lindner, J. R.

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov.3(6), 527–533 (2004).
[CrossRef] [PubMed]

Lips, A.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

Liu, H.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

Liu, J.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Liu, Y.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Liu, Z.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Louchev, O. A.

Lui, W.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

Mai, W.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Mallouk, T. E.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Mao, X.

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

Markovic, Z. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Marmottant, P.

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A.101(26), 9523–9527 (2004).
[CrossRef] [PubMed]

Martin, B. R.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Meng, L.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Miao, X.

Misawa, H.

Muneyuki, E.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Murazawa, N.

Murugan, G. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

Neild, A.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip11(21), 3710–3715 (2011).
[CrossRef] [PubMed]

Niu, L.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

Ohl, C. D.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

Ohl, C.-D.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Ohta, A. T.

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
[CrossRef]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid.11(3), 307–316 (2011).
[CrossRef]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

Ollivier, P. J.

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

Pantovic, A. C.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Pimentel-Domínguez, R.

Porter, R. T.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
[CrossRef] [PubMed]

Prakash, M.

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Prausnitz, M.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Prentice, P.

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Quinto-Su, P. A.

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Ren, Q.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Richardson, D. J.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

Robinson, J. T.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Rogers, P.

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip11(21), 3710–3715 (2011).
[CrossRef] [PubMed]

Rubinszteindunlop, H.

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Stern, M. S.

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

Stone, H. A.

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

Sun, X.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Tabakman, S. M.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Tam, H.-Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Tan, S.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Tan, S. Z.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Tian, B.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

Todorovic-Markovic, B. M.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Toyabe, S.

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

Trajkovic, V. S.

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Tsutsui, J. M.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
[CrossRef] [PubMed]

Valley, D.

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

Valley, J. K.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

Venugopalan, V.

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Vinh, D.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Wada, S.

Wang, C.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

Wang, H.

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

Wang, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

Wang, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Wei, K.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

Wilkinson, J. S.

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

Wilson, B. K.

Wu, J.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Wu, M. C.

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

Wu, T.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

Wu, T.-H.

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

Xie, A.

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Xie, F.

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
[CrossRef] [PubMed]

Xin, H.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Xu, C. L.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

Xu, L.

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
[CrossRef]

Xu, R.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Yang, K.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Yang, X.

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Ye, J. Y.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Yokoyama, K.

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

Yu, A. L.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Zenit, R.

Zhang, G.

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Zhang, J.

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Zhang, S.

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Zheng, H.

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

Zheng, Y.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

Zhong, H.

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Zhou, Y.

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Zhu, C.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

Zhu, S.

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

ACS Nano (1)

B. Tian, C. Wang, S. Zhang, L. Feng, and Z. Liu, “Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide,” ACS Nano5(9), 7000–7009 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

R. Xu, H. Xin, Q. Li, X. Yang, H. Chen, and B. Li, “Photothermal formation and targeted positioning of bubbles by a fiber taper,” Appl. Phys. Lett.101(5), 054103 (2012).
[CrossRef]

Y. Li, L. Xu, and B. Li, “Gold nanorod-induced localized surface plasmon for microparticle aggregation,” Appl. Phys. Lett.101(5), 053118 (2012).
[CrossRef]

T.-H. Wu, L. Gao, Y. Chen, K. Wei, and P.-Y. Chiou, “Pulsed laser triggered high speed microfluidic switch,” Appl. Phys. Lett.93(14), 144102 (2008).
[CrossRef]

L. Meng, F. Cai, J. Chen, L. Niu, Y. Li, J. Wu, and H. Zheng, “Precise and programmable manipulation of microbubbles by two-dimensional standing surface acoustic waves,” Appl. Phys. Lett.100(17), 173701 (2012).
[CrossRef]

A. T. Ohta, A. Jamshidi, J. K. Valley, H.-Y. Hsu, and M. C. Wu, “Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate,” Appl. Phys. Lett.91(91), a130823 (2007).
[PubMed]

W. Hu, K. S. Ishii, and A. T. Ohta, “Micro-assembly using optically controlled bubble microrobots,” Appl. Phys. Lett.99(9), 094103 (2011).
[CrossRef]

K. Yang, Y. Zhou, Q. Ren, J. Y. Ye, and C. X. Deng, “Dynamics of microbubble generation and trapping by self-focused femtosecond laser pulses,” Appl. Phys. Lett.95(5), 051107 (2009).
[CrossRef]

Biomaterials (2)

W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, and H. Zhong, “Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide,” Biomaterials32(33), 8555–8561 (2011).
[CrossRef] [PubMed]

Z. M. Markovic, L. M. Harhaji-Trajkovic, B. M. Todorovic-Markovic, D. P. Kepić, K. M. Arsikin, S. P. Jovanović, A. C. Pantovic, M. D. Dramićanin, and V. S. Trajkovic, “In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes,” Biomaterials32(4), 1121–1129 (2011).
[CrossRef] [PubMed]

Cardiovasc. Ultrasound (1)

J. M. Tsutsui, F. Xie, and R. T. Porter, “The use of microbubbles to target drug delivery,” Cardiovasc. Ultrasound2(1), 23 (2004).
[CrossRef] [PubMed]

Chem. Asian J. (1)

X. Cai, S. Z. Tan, A. L. Yu, J. Zhang, J. Liu, W. Mai, and Z. Jiang, “Sodium 1-naphthalenesulfonate-functionalized reduced graphene oxide stabilizes silver nanoparticles with lower cytotoxicity and long-term antibacterial activity,” Chem. Asian J.7(7), 1664–1670 (2012).
[CrossRef] [PubMed]

Chem. Mater. (1)

N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, “Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations,” Chem. Mater.11(3), 771–778 (1999).
[CrossRef]

IEE Proc. Optoelectron. (1)

C. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc. Optoelectron.141(5), 281–286 (1994).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

W.-P. Huang, C. L. Xu, W. Lui, and K. Yokoyama, “The perfectly matched layer (PML) boundary condition for the beam propagation method,” IEEE Photonics Technol. Lett.8(5), 649–651 (1996).
[CrossRef]

J. Am. Chem. Soc. (2)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc.80(6), 1339 (1958).
[CrossRef]

J. T. Robinson, S. M. Tabakman, Y. Liang, H. Wang, H. S. Casalongue, D. Vinh, and H. Dai, “Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy,” J. Am. Chem. Soc.133(17), 6825–6831 (2011).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

A. S. Basu and Y. B. Gianchandani, “Virtual microfluidic traps, filters, channels and pumps using Marangoni flows,” J. Micromech. Microeng.18(11), 115031 (2008).
[CrossRef]

J. Mod. Opt. (1)

D. W. Berry, N. R. Heckenberg, and H. Rubinszteindunlop, “Effects associated with bubble formation in optical trapping,” J. Mod. Opt.47, 1575–1585 (2000).

Jpn. J. Appl. Phys. (1)

G. S. Murugan, G. Brambilla, J. S. Wilkinson, and D. J. Richardson, “Optical propulsion of individual and clustered microspheres along sub-micron optical wires,” Jpn. J. Appl. Phys.47(8), 6716–6718 (2008).
[CrossRef]

Lab Chip (3)

P. Rogers and A. Neild, “Selective particle trapping using an oscillating microbubble,” Lab Chip11(21), 3710–3715 (2011).
[CrossRef] [PubMed]

Y. Zheng, H. Liu, Y. Wang, C. Zhu, S. Wang, J. Cao, and S. Zhu, “Accumulating microparticles and direct-writing micropatterns using a continuous-wave laser-induced vapor bubble,” Lab Chip11(22), 3816–3820 (2011).
[CrossRef] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H.-Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip11(7), 1389–1395 (2011).
[CrossRef] [PubMed]

Langmuir (2)

S. Fujii, K. Kanaizuka, S. Toyabe, K. Kobayashi, E. Muneyuki, and M. A. Haga, “Fabrication and placement of a ring structure of nanoparticles by a laser-induced micronanobubble on a gold surface,” Langmuir27(14), 8605–8610 (2011).
[CrossRef] [PubMed]

X. Cai, S. Tan, M. Lin, A. Xie, W. Mai, X. Zhang, Z. Lin, T. Wu, and Y. Liu, “Synergistic antibacterial brilliant blue/reduced graphene oxide/quaternary phosphonium salt composite with excellent water solubility and specific targeting capability,” Langmuir27(12), 7828–7835 (2011).
[CrossRef] [PubMed]

Microfluid. Nanofluid. (2)

D. Ahmed, X. Mao, B. K. Juluri, and T. J. Huang, “A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles,” Microfluid. Nanofluid.7(5), 727–731 (2009).
[CrossRef]

W. Hu and A. T. Ohta, “Aqueous droplet manipulation by optically induced Marangoni circulation,” Microfluid. Nanofluid.11(3), 307–316 (2011).
[CrossRef]

Nano Lett. (1)

K. Yang, S. Zhang, G. Zhang, X. Sun, S.-T. Lee, and Z. Liu, “Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy,” Nano Lett.10(9), 3318–3323 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

Z. Liu, W. H. Hung, M. Aykol, D. Valley, and S. B. Cronin, “Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates,” Nanotechnology21(10), 105304 (2010).
[CrossRef] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem.2(12), 1015–1024 (2010).
[CrossRef] [PubMed]

Nat. Phys. (1)

P. Prentice, A. Cuschieri, K. Dholakia, M. Prausnitz, and P. Campbell, “Membrane disruption by optically controlled microbubble cavitation,” Nat. Phys.1(2), 107–110 (2005).
[CrossRef]

Nat. Rev. Drug Discov. (1)

J. R. Lindner, “Microbubbles in medical imaging: current applications and future directions,” Nat. Rev. Drug Discov.3(6), 527–533 (2004).
[CrossRef] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

K. Y. Lim, P. A. Quinto-Su, E. Klaseboer, B. C. Khoo, V. Venugopalan, and C.-D. Ohl, “Nonspherical laser-induced cavitation bubbles,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.81(1), 016308 (2010).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

P. A. Quinto-Su, X. H. Huang, S. R. Gonzalez-Avila, T. Wu, and C. D. Ohl, “Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles,” Phys. Rev. Lett.104(1), 014501 (2010).
[CrossRef] [PubMed]

Y.-H. Chen, H.-Y. Chu, and L. i, “Interaction and fragmentation of pulsed laser induced microbubbles in a narrow gap,” Phys. Rev. Lett.96(3), 034505 (2006).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett.97(3), 038103 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A. (1)

P. Marmottant and S. Hilgenfeldt, “A bubble-driven microfluidic transport element for bioengineering,” Proc. Natl. Acad. Sci. U. S. A.101(26), 9523–9527 (2004).
[CrossRef] [PubMed]

Science (2)

E. Dressaire, R. Bee, D. C. Bell, A. Lips, and H. A. Stone, “Interfacial polygonal nanopatterning of stable microbubbles,” Science320(5880), 1198–1201 (2008).
[CrossRef] [PubMed]

M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science315(5813), 832–835 (2007).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (1911 KB)     
» Media 2: MOV (1981 KB)     
» Media 3: MOV (758 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic illustration of the experimental setup for microbubble generation. The red arrow indicates the direction of light propagation. (b) Effective diameters (Deff) (black line) and power ratio (η) outside the fiber core (blue line) of the fundamental modes (HE11) as functions of wavelength. The upper and lower insets show respectively the 3D and 2D field profiles of HE11 mode at wavelength of 1550 nm. (c) Absorption spectra of GONs dispersions in DMF at the concentration of 0, 0.05, 0.20, 0.50 mg/ml, at wavelength of 800−1600 nm.

Fig. 2
Fig. 2

Optical microscope images for GONs-deposition (a, b) and microbubbles (c, d) after light was launched into the 1.8-μm-diameter microfiber for t = 0'00” (a), t = 0'30” (b), t = 1'46” (c), and t = 2'06” (d).

Fig. 3
Fig. 3

Optical microscope images for GONs-deposition and microbubbles after light was launched into 1.8-μm-diameter fiber for t = 12'00” (a), t = 15'00” (b), t = 18'10” (c), and t = 19'40” (d). Media 1 illustrates the detailed process of deposition and microbubble generation from t = 12'00” (Fig. 3(a)) to t = 15'00” (Fig. 3(b)).

Fig. 4
Fig. 4

Diameters of microbubbles as functions of time (t') for (a) microbubble shown in Figs. 2(c) and 2(d), and (b) microbubbles B1, B2, and B3 in Figs. 3(c) and 3(d), where t' = 0s represents the emergence time point of every microbubble. The insets of bottom right in Fig. 4(a) show optical microscope images of the microbubble at various growing time points. Scale bars represent 50 μm.

Fig. 5
Fig. 5

The output spectra at t = 0'00”, 0'30”, 7'30”, 15'00”, and 30'00”. The insets show the corresponding optical microscope images.

Fig. 6
Fig. 6

Schematic illustration of the mechanism of GONs-deposition and microbubble formation on the microfiber. (a) GONs are initially deposited without microbubble formation. (b) Microbubble is formed and induces thermocapillary flow. (c) Quantities of GONs are dragged to the microfiber by the convection around the microbubble. (d) GONs-deposition is expanded under optical gradient force and van der Waals force.

Fig. 7
Fig. 7

Further observation about microbubble generation after spectra disappeared. (a)–(c) Microbubble generation at the left side of the deposition. (d)–(f) Small microbubbles circled by the blue dotted lines were formed and revolved around a stationary big microbubble. Media 2 demonstrates the process of 11 detaching microbubbles in 3′27”, where the diameter of detaching microbubbles ranged from 200 μm to 336 μm. Media 3 demonstrates the moving process from t = 66'30” to 67'50”.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n 2 1= 0.6961663 λ 2 λ 2 (0.0684043) 2 + 0.4079426 λ 2 λ 2 (0.1162414) 2 + 0.8974794 λ 2 λ 2 (9.896161) 2
j = D c D T c T
j = v c D c D T c T
τ s =μ d u s d N = σ T T s

Metrics