Abstract

We experimentally demonstrate multi-beam high spatial resolution laser micromachining with femtosecond pulses. The effects of chromatic aberrations as well as pulse stretching on the material processed due to diffraction were significantly mitigated by using a suited dispersion compensated module (DCM). This permits to increase the area of processing in a factor 3 in comparison with a conventional setup. Specifically, 52 blind holes have been drilled simultaneously onto a stainless steel sample with a 30 fs laser pulse in a parallel processing configuration.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements

Yutaka Kuroiwa, Nobuhito Takeshima, Yoshihiro Narita, Shuhei Tanaka, and Kazuyuki Hirao
Opt. Express 12(9) 1908-1915 (2004)

Hybrid optics for focusing ultrashort laser pulses

Ulrike Fuchs, Uwe D. Zeitner, and Andreas Tünnermann
Opt. Lett. 31(10) 1516-1518 (2006)

Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis

Gladys Mínguez-Vega, Enrique Tajahuerce, Mercedes Fernández-Alonso, Vicent Climent, Jesús Lancis, José Caraquitena, and Pedro Andrés
Opt. Express 15(2) 278-288 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
    [Crossref]
  2. R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
    [Crossref] [PubMed]
  3. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
    [Crossref]
  4. J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
    [Crossref]
  5. S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A. 80, 683–685 (2004).
    [Crossref]
  6. P. S. Salter and M. J. Booth, “Addressable microlens array for parallel laser microfabrication,” Opt. Lett. 36(12), 2302–2304 (2011).
    [Crossref] [PubMed]
  7. D. Kim and P. T. C. So, “High-throughput three-dimensional lithographic microfabrication,” Opt. Lett. 35(10), 1602–1604 (2010).
    [Crossref] [PubMed]
  8. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010).
    [Crossref] [PubMed]
  9. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668–2670 (2000).
    [Crossref]
  10. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
    [Crossref]
  11. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
    [Crossref]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, “Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements,” Opt. Express 12(9), 1908–1915 (2004).
    [Crossref] [PubMed]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
    [Crossref]
  14. S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
    [Crossref] [PubMed]
  15. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
    [Crossref]
  16. Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
    [Crossref]
  17. A. Jesacher and M. J. Booth, “Parallel direct laser writing in three dimensions with spatially dependent aberration correction,” Opt. Express 18(20), 21090–21099 (2010).
    [Crossref] [PubMed]
  18. J. Cugat, A. Ruiz de la Cruz, R. Solé, A. Ferrer, J. J. Carvajal, X. Mateos, J. Massons, J. Solís, G. Lifante, F. Díaz, and M. Aguilgó, “Femtosecond-Laser Microstructuring of Ribs on Active (Yb,Nb): RTP/RTP Planar Waveguides,” J. Lightwave Technol. 31(3), 385–390 (2013).
    [Crossref]
  19. J. Amako, K. Nagasaka, and N. Kazuhiro, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 27(11), 969–971 (2002).
    [Crossref] [PubMed]
  20. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [Crossref] [PubMed]
  21. L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
    [Crossref]
  22. E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
    [Crossref]
  23. J. R. Vázquez de Aldana, C. Méndez, and L. Roso, “Saturation of ablation channels micro-machined in fused silica with many femtosecond laser pulses,” Opt. Express 14(3), 1329–1338 (2006).
    [Crossref] [PubMed]
  24. J. Lancis, G. Mínguez-Vega, E. Tajahuerce, V. Climent, P. Andrés, and J. Caraquitena, “Chromatic compensation of broadband light diffraction: ABCD-matrix approach,” J. Opt. Soc. Am. A 21(10), 1875–1885 (2004).
    [Crossref] [PubMed]
  25. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, “High spatiotemporal resolution in multifocal processing with femtosecond laser pulses,” Opt. Lett. 31(17), 2631–2633 (2006).
    [Crossref] [PubMed]
  26. G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, and P. Andrés, “Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis,” Opt. Express 15(2), 278–288 (2007).
    [Crossref] [PubMed]
  27. R. Martínez-Cuenca, O. Mendoza-Yero, B. Alonso, Í. J. Sola, G. Mínguez-Vega, and J. Lancis, “Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses,” Opt. Lett. 37(5), 957–959 (2012).
    [Crossref] [PubMed]
  28. B. Alonso, I. J. Sola, O. Varela, J. Hernández-Toro, C. Méndez, J. San Román, A. Zaïr, and L. Roso, “Spatiotemporal amplitude and phase reconstruction by Fourier-transform of interference spectra of high-complex-beams,” J. Opt. Soc. Am. B 27(5), 933–940 (2010).
    [Crossref]
  29. Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
    [Crossref]
  30. J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
    [Crossref]

2013 (2)

2012 (1)

2011 (1)

2010 (5)

2009 (3)

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

2008 (2)

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

2007 (1)

2006 (2)

2005 (3)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

2004 (3)

2003 (1)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

2002 (2)

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

J. Amako, K. Nagasaka, and N. Kazuhiro, “Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements,” Opt. Lett. 27(11), 969–971 (2002).
[Crossref] [PubMed]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

2000 (1)

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668–2670 (2000).
[Crossref]

1997 (1)

J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Adachi, Y.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

Adams, D. E.

Aguilgó, M.

Alonso, B.

Amako, J.

Andrés, P.

Ashkenasi, D.

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Axente, E.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Backus, S.

Baumert, T.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Booth, M. J.

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Caraquitena, J.

Carvajal, J. J.

Cheng, J.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Clemente, P.

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

Climent, V.

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, and P. Andrés, “Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis,” Opt. Express 15(2), 278–288 (2007).
[Crossref] [PubMed]

J. Lancis, G. Mínguez-Vega, E. Tajahuerce, V. Climent, P. Andrés, and J. Caraquitena, “Chromatic compensation of broadband light diffraction: ABCD-matrix approach,” J. Opt. Soc. Am. A 21(10), 1875–1885 (2004).
[Crossref] [PubMed]

J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
[Crossref]

Cugat, J.

Dearden, G.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Díaz, F.

Durfee, C. G.

Edwardson, S.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Edwardson, S. P.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Englert, L.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Fearon, E.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Fernández-Alonso, M.

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, and P. Andrés, “Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis,” Opt. Express 15(2), 278–288 (2007).
[Crossref] [PubMed]

Ferrer, A.

Fotakis, C.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Haag, L.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Hasegawa, S.

Hayasaki, Y.

S. Hasegawa and Y. Hayasaki, “Adaptive optimization of a hologram in holographic femtosecond laser processing system,” Opt. Lett. 34(1), 22–24 (2009).
[Crossref] [PubMed]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Hernández-Toro, J.

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Hirao, K.

Jesacher, A.

Johnson, A.

Juodkazis, S.

S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A. 80, 683–685 (2004).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Kato, J.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

Kawata, S.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668–2670 (2000).
[Crossref]

Kazuhiro, N.

Kim, D.

Kleinfeld, D.

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Kuang, Z.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Kuroiwa, Y.

Lancis, J.

Leach, J.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Lifante, G.

Liu, C.-

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Liu, D.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Loukakos, P. A.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Magoulakis, E.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Marine, W.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

Martínez-Cuenca, R.

Martínez-León, Ll.

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

Massons, J.

Mateos, X.

Matsuo, S.

S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A. 80, 683–685 (2004).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Méndez, C.

Mendoza-Yero, O.

R. Martínez-Cuenca, O. Mendoza-Yero, B. Alonso, Í. J. Sola, G. Mínguez-Vega, and J. Lancis, “Multibeam second-harmonic generation by spatiotemporal shaping of femtosecond pulses,” Opt. Lett. 37(5), 957–959 (2012).
[Crossref] [PubMed]

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

Mínguez-Vega, G.

Misawa, H.

S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A. 80, 683–685 (2004).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Nagasaka, K.

Narita, Y.

Nishida, N.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Padgett, M.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Papadopoulou, E. L.

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

Perrie, W.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Rethfeld, B.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Rosenfeld, A.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Roso, L.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Ruiz de la Cruz, A.

Salter, P. S.

San Román, J.

Sarpe-Tudoran, C.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Shang, S.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Sharp, M.

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Shoji, S.

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668–2670 (2000).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

So, P. T. C.

Sola, I. J.

Sola, Í. J.

Solé, R.

Solís, J.

Squier, J. A.

Stoian, R.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Sugimoto, T.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Sun, H.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

Tajahuerce, E.

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

G. Mínguez-Vega, E. Tajahuerce, M. Fernández-Alonso, V. Climent, J. Lancis, J. Caraquitena, and P. Andrés, “Dispersion-compensated beam-splitting of femtosecond light pulses: Wave optics analysis,” Opt. Express 15(2), 278–288 (2007).
[Crossref] [PubMed]

J. Lancis, G. Mínguez-Vega, E. Tajahuerce, V. Climent, P. Andrés, and J. Caraquitena, “Chromatic compensation of broadband light diffraction: ABCD-matrix approach,” J. Opt. Soc. Am. A 21(10), 1875–1885 (2004).
[Crossref] [PubMed]

J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
[Crossref]

Takeshima, N.

Takeyasu, N.

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

Takita, A.

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Tanaka, S.

Tepichín, E.

J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
[Crossref]

Torres-Company, V.

Tsai, P. S.

Varela, O.

Vázquez de Aldana, J. R.

Vitek, D. N.

Watkins, K.

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

Watkins, K. G.

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Wollenhaupt, M.

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

Zaïr, A.

Appl. Phys. Lett. (6)

J. Kato, N. Takeyasu, Y. Adachi, H. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102 (2005).
[Crossref]

S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76(19), 2668–2670 (2000).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, “Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals,” Appl. Phys. Lett. 79(6), 725–727 (2001).
[Crossref]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101 (2005).
[Crossref]

Ll. Martínez-León, P. Clemente, E. Tajahuerce, G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, J. Lancis, V. Climent, and P. Andrés, “Spatial-chirp compensation in dynamical holograms reconstructed with ultrafast lasers,” Appl. Phys. Lett. 94(1), 011104 (2009).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

L. Englert, M. Wollenhaupt, L. Haag, C. Sarpe-Tudoran, B. Rethfeld, and T. Baumert, “Material processing of dielectrics with temporally asymmetric shaped femtosecond laser pulses on the nanometer scale,” Appl. Phys., A Mater. Sci. Process. 92(4), 749–753 (2008).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: The problem of Coulomb explosion,” Appl. Phys., A Mater. Sci. Process. 81(2), 345–356 (2005).
[Crossref]

Appl. Phys., A. (1)

S. Matsuo, S. Juodkazis, and H. Misawa, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys., A. 80, 683–685 (2004).
[Crossref]

Appl. Surf. Sci. (3)

Z. Kuang, W. Perrie, J. Leach, M. Sharp, S. P. Edwardson, M. Padgett, G. Dearden, and K. G. Watkins, “High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator,” Appl. Surf. Sci. 255(5), 2284–2289 (2008).
[Crossref]

Z. Kuang, D. Liu, W. Perrie, S. Edwardson, M. Sharp, E. Fearon, G. Dearden, and K. Watkins, “Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring,” Appl. Surf. Sci. 255(13-14), 6582–6588 (2009).
[Crossref]

E. L. Papadopoulou, E. Axente, E. Magoulakis, C. Fotakis, and P. A. Loukakos, “Laser induced forward transfer of metal oxides using femtosecond double pulses,” Appl. Surf. Sci. 257(2), 508–511 (2010).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Lancis, E. Tajahuerce, P. Andrés, V. Climent, and E. Tepichín, “Single-zone-plate achromatic fresnel-transform setup: Pattern tunability,” Opt. Commun. 136(3-4), 297–305 (1997).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

J. Cheng, C.- Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, and K. Watkins, “A review of ultrafast laser materials micromachining,” Opt. Laser Technol. 46, 88–102 (2013).
[Crossref]

Opt. Lett. (6)

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. Stoian, A. Rosenfeld, D. Ashkenasi, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, “Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation,” Phys. Rev. Lett. 88(9), 097603 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the diffractive-refractive optical system used to improve multifocal micromachining.

Fig. 2
Fig. 2

Measurements in the intermediate focal plane: a) Details of the irradiance profile without DCM (top), and with DCM (bottom). b) Instantaneous intensity for the central point of each diffraction order without DCM (top), and with DCM (bottom).

Fig. 3
Fig. 3

Details of a region of the surface of the ablated sample observed with an optical microscope (a) with a conventional setup (b) with the DCM.

Fig. 4
Fig. 4

SEM images of the holes corresponding to different diffraction orders without DCM (top), and with DCM (bottom).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ ' x 2 σ 0 2 ( 1+ n 2 λ 0 2 σ x 2 p 0 2 c 2 σ t 2 )andσ ' t 2 σ t 2 ( 1+ n 2 λ 0 2 σ x 2 p 0 2 c 2 σ t 2 )

Metrics