Abstract

Nanoantennas play a fundamental role in the nanotechnology due to their capabilities to confine and enhance the light through converting the localized fields to propagating ones, and vice versa. Here, we theoretically propose a novel nanoantenna with the metal-insulator-graphene configuration where a graphene sheet dynamically controls the characteristics of a metallic dipole antenna in terms of near-field distribution, resonance frequency, bandwidth, radiation pattern, etc. Our results show that by modifying dispersion relation of the graphene sheet attached to the insulator through tuning chemical potentials, we can achieve strong mode couplings between the graphene sheet and the metallic nanoantenna on the top of the insulator. Interestingly, the in-phase and out-of-phase couplings between metallic plasmonics and graphene plasmonics not only split the single resonance frequency of the conventional metallic dipole antenna but also modify the near-field and far-field responses of the metal-graphene nanoantenna. This work is of a great help to design high-performance electrically-tunable nanoantennas applicable both in nano-optics and nano-electronics fields.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
    [CrossRef] [PubMed]
  2. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
    [CrossRef]
  3. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
    [CrossRef] [PubMed]
  4. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
    [CrossRef] [PubMed]
  5. P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef]
  6. X. Chen, V. Sandoghdar, and M. Agio, “Nanofocusing radially-polarized beams for high-throughput funneling of optical energy to the near field,” Opt. Express18, 10878–10887 (2010).
    [CrossRef] [PubMed]
  7. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
    [CrossRef]
  8. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
    [CrossRef] [PubMed]
  9. J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
    [CrossRef] [PubMed]
  10. W. Lu, W. Zhu, H. Xu, Z. Ni, Z. Dong, and T. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express21, 10475–10482 (2013).
    [CrossRef] [PubMed]
  11. A. K. Geim, “Graphene: Status and prospects,” Science324, 1530–1534 (2009).
    [CrossRef] [PubMed]
  12. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
    [CrossRef]
  13. Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
    [CrossRef] [PubMed]
  14. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
    [CrossRef] [PubMed]
  15. M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
    [CrossRef]
  16. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
    [CrossRef] [PubMed]
  17. A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
    [CrossRef] [PubMed]
  18. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  19. G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).
    [CrossRef]
  20. A. Mock, “Padé approximant spectral fit for fdtd simulation of graphene in the near infrared,” Opt. Mater. Express2, 771–781 (2012).
    [CrossRef]
  21. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
    [CrossRef] [PubMed]
  22. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  23. X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
    [CrossRef]
  24. L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
    [CrossRef]
  25. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973).
    [CrossRef]

2013 (3)

J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
[CrossRef] [PubMed]

W. Lu, W. Zhu, H. Xu, Z. Ni, Z. Dong, and T. Cui, “Flexible transformation plasmonics using graphene,” Opt. Express21, 10475–10482 (2013).
[CrossRef] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

2012 (5)

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

A. Mock, “Padé approximant spectral fit for fdtd simulation of graphene in the near infrared,” Opt. Mater. Express2, 771–781 (2012).
[CrossRef]

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

2011 (2)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

2010 (2)

2009 (3)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
[CrossRef]

A. K. Geim, “Graphene: Status and prospects,” Science324, 1530–1534 (2009).
[CrossRef] [PubMed]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

2008 (3)

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

2007 (1)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

2006 (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

2005 (1)

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Agio, M.

Alù, A.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
[CrossRef]

Buljan, H.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Capasso, F.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Chen, X.

Choy, W. C. H.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Colombo, L.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Crommie, M.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Cui, T.

Ding, B.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Ding, K. H.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Dong, Z.

Eisler, H.-J.

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Engheta, N.

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

Falko, V. I.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Geim, A. K.

A. K. Geim, “Graphene: Status and prospects,” Science324, 1530–1534 (2009).
[CrossRef] [PubMed]

Gellert, P. R.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Genevet, P.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Girit, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Guo, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Hagness, S.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Hanson, G. W.

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

Hecht, B.

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Hou, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Huang, Z.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Huo, L.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Jablan, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kats, M. A.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Kim, K.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Kong, J.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Kong, J. A.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Koppens, F. H. L.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Li, S.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Li, X.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Li, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Lin, T.

J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
[CrossRef] [PubMed]

Liu, Q.

J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
[CrossRef] [PubMed]

Lu, S.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Lu, W.

Martin, O. J. F.

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Mhlschlegel, P.

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Mock, A.

Ni, Z.

Novoselov, K. S.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Ren, X.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Sandoghdar, V.

Schuller, J. A.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
[CrossRef]

Schwab, M. G.

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Sha, W. E. I.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Shen, Y. R.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Soljacic, M.

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

Song, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Soukoulis, C. M.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Stranick, S. J.

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

Taflove, A.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Taubner, T.

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
[CrossRef]

Tian, C.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Tsang, L.

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Wang, F.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Wang, H.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Wu, L.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Wu, X.

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

Xie, F.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Xu, H.

Yang, Y.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Yao, Y.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973).
[CrossRef]

You, J.

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Yu, N.

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Zettl, A.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Zhang, Y.

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

Zhao, R.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Zhou, J.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Zhu, J.

J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
[CrossRef] [PubMed]

Zhu, W.

Adv. Mater. (1)

X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual plasmonic nanostructures for high performance inverted organic solar cells,” Adv. Mater.24, 3046–3052 (2012).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

L. Novotny and S. J. Stranick, “Near-field optical microscopy and spectroscopy with pointed probes,” Annu. Rev. Phys. Chem.57, 303–331 (2006).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

X. Ren, Z. Huang, X. Wu, S. Lu, H. Wang, L. Wu, and S. Li, “High-order unified symplectic fdtd scheme for the metamaterials,” Comput. Phys. Commun.183, 1192–1200 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron.9, 919–933 (1973).
[CrossRef]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys.103, 064302 (2008).
[CrossRef]

Nano Lett. (2)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: A platform for strong lightc-matter interactions,” Nano Lett.11, 3370–3377 (2011).
[CrossRef] [PubMed]

Y. Yao, M. A. Kats, P. Genevet, N. Yu, Y. Song, J. Kong, and F. Capasso, “Broad electrical tuning of graphene-loaded plasmonic antennas,” Nano Lett.13, 1257–1264 (2013).
[CrossRef] [PubMed]

Nanoscale (1)

J. Zhu, Q. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale5, 7785–7789 (2013).
[CrossRef] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9, 205–213 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical antenna thermal emitters,” Nat. Photonics3, 658–661 (2009).
[CrossRef]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics6, 749–758 (2012).
[CrossRef]

Nature (1)

K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature490, 192–200 (2012).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

M. Jablan, H. Buljan, and M. Soljačić, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B80, 245435 (2009).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83, 035105 (2011).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett.98, 266802 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas,” Phys. Rev. Lett.101, 043901 (2008).
[CrossRef] [PubMed]

Science (3)

A. K. Geim, “Graphene: Status and prospects,” Science324, 1530–1534 (2009).
[CrossRef] [PubMed]

F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, “Gate-variable optical transitions in graphene,” Science320, 206–209 (2008).
[CrossRef] [PubMed]

P. Mhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef]

Other (2)

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

L. Tsang, J. A. Kong, and K. H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A schematic pattern of metal-graphene nanoantennas. The chemical potential of graphene can be electrostatically tunable by changing the back gate voltage. The right figure shows a unit cell of the metal-graphene nanoantenna. The graphene sheet is deposited at the bottom of Al2O3. The geometric parameters are as l = 720 nm, w = 40 nm, h = 40 nm, and Gap = 20 nm.

Fig. 2
Fig. 2

The optical properties of graphene at different chemical potentials (μc = 0.9, 1.0, 1.1 eV). Other physical quantities are set as T = 300 K and Γ = 11 meV/h̄ [20]. (a) The real part, (b) The imaginary parts of the normalized surface conductivity (defined as σ/σ0 and σ0 = e2/) of the graphene sheet. (c) The analytical dispersion relation of the graphene sheet sandwiched by the semi-infinite insulator Al2O3 and SiO2. (d) The near field distributions of the doped graphene sheet (μc =1.1 eV) inserted by 4 nm Al2O3 and 100 nm SiO2 (as shown in the inset) at the wavelength of 3000 nm.

Fig. 3
Fig. 3

The characteristics of the metallic dipole nanoantenna with and without the graphene sheet. Both the extinction cross section and radar cross section are normalized with the geometrical cross section area of the metallic dipole antenna (2w×l). (a) Extinction cross section. (b) The polar plot of the far-field radiation pattern. (c) Extinction Cross Section at different chemical potentials.(d) Extinction Cross Section at different scattering rate Gamma (with μc =1.0 eV).

Fig. 4
Fig. 4

The near-field distributions (in log scale) of the metal-graphene nanoantenna corresponding to the four wavelengths denoted by the arrows of Fig. 3(a). (a) 2500 nm; (b) 2900 nm; (c) 3000 nm; (d) 3050 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ ( ω , μ c , Γ , T ) = j e 2 ( ω j 2 Γ ) π h ¯ 2 [ 1 ( ω j 2 Γ ) 2 × 0 ε ( f d ( ε ) ε f d ( ε ) ε ) d ε 0 ( f d ( ε ) f d ( ε ) ( ω j 2 Γ ) 2 4 ( ε / h ¯ ) 2 ) d ε ]
β ( ω ) ε 0 ε r 1 + ε r 2 2 2 j ω σ ( ω )

Metrics