Abstract

We demonstrate a single-spacing, multi-wavelength Brillouin-Raman fiber laser utilizing an enhanced cavity of nonlinear amplifying loop mirror. In this structure, the optimization of multi-wavelength lasing is done with proper adjustments of coupling ratio and Brillouin pump power. When setting the Raman pump power to 300 mW, up to 28 channels with an average 17 dB optical signal-to-noise ratio are achieved. In this case, the Brillouin pump power is maintained at −2.6 dBm when the splitting ratio and Brillouin pump wavelength are fixed at 99/1 and 1555 nm, correspondingly. Our achievements present high numbers of Stokes channels with an acceptable optical signal-to-noise ratio at low pump power operation.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Fok and C. Shu, “Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser,” Opt. Express14(7), 2618–2624 (2006).
    [CrossRef] [PubMed]
  2. Y.-G. Han, T. V. Tran, and S. B. Lee, “Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber,” Opt. Lett.31(6), 697–699 (2006).
    [CrossRef] [PubMed]
  3. X. Feng, H. Y. Tam, and P. K. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express14(18), 8205–8210 (2006).
    [CrossRef] [PubMed]
  4. Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multi-wavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett.33(4), 324–326 (2008).
    [CrossRef] [PubMed]
  5. Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
    [CrossRef]
  6. A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
    [CrossRef]
  7. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express13(1), 142–147 (2005).
    [CrossRef] [PubMed]
  8. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
    [CrossRef] [PubMed]
  9. B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
    [CrossRef]
  10. G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express21(16), 18724–18732 (2013).
    [CrossRef] [PubMed]
  11. A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007).
    [CrossRef] [PubMed]
  12. K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
    [CrossRef] [PubMed]
  13. N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
    [CrossRef]
  14. A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett.31(7), 918–920 (2006).
    [CrossRef] [PubMed]
  15. A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009).
    [CrossRef] [PubMed]
  16. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol.27(22), 5038–5044 (2009).
    [CrossRef]
  17. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett.13(1), 56–58 (1988).
    [CrossRef] [PubMed]
  18. S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006).
    [CrossRef]

2013 (1)

2011 (3)

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
[CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (1)

2006 (5)

2005 (1)

2004 (1)

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

2002 (1)

2001 (1)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

1988 (1)

Abas, A. F.

Abu Bakar, M. H.

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

Ahmad, A.

Ahmad Hambali, N. A. M.

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

Ajiya, M.

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

Al-Mansoori, M. H.

Bakar, A. A. A.

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

Bhamber, R.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006).
[CrossRef]

Boscolo, S.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006).
[CrossRef]

Chang, J.-S.

Chen, T.

Doran, N. J.

Feng, X.

Fok, M. P.

Han, Y.-G.

Hitam, S.

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

Hizam, H.

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

Hu, S.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

Huang, T.

Islam, M. S.

Kim, P.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Lee, J.-H.

Lee, S. B.

Lin, J.

Liu, X.

Lu, C.

Lu, F.

Mahdi, M. A.

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express21(16), 18724–18732 (2013).
[CrossRef] [PubMed]

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizing nonlinear amplifying loop mirror,” J. Lightwave Technol.27(22), 5038–5044 (2009).
[CrossRef]

A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009).
[CrossRef] [PubMed]

A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007).
[CrossRef] [PubMed]

A. K. Zamzuri, M. I. Md Ali, A. Ahmad, R. Mohamad, and M. A. Mahdi, “Brillouin-Raman comb fiber laser with cooperative Rayleigh scattering in a linear cavity,” Opt. Lett.31(7), 918–920 (2006).
[CrossRef] [PubMed]

Mamdoohi, G.

Md Ali, M. I.

Min, B.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Mohamad, R.

Mohd Noor, S. B.

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

Mokhtar, M.

Ng, J.

Park, K.-D.

Park, N.

K.-D. Park, B. Min, P. Kim, N. Park, J.-H. Lee, and J.-S. Chang, “Dynamics of cascaded Brillouin-Rayleigh scattering in a distributed fiber Raman amplifier,” Opt. Lett.27(3), 155–157 (2002).
[CrossRef] [PubMed]

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Ramzia Salem, A. M.

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

Samsuri, N. M.

Sarmani, A. R.

Shu, C.

Song, Y. J.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

Sun, J.

Tam, H. Y.

Tang, J.

Tran, T. V.

Turitsyn, S. K.

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006).
[CrossRef]

Wai, P. K.

Wood, D.

Wu, J.

Xia, Y.

Xia, Y. X.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

Xu, K.

Yaacob, M. H.

Yang, X.

Ye, Q. H.

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

Zamzuri, A. K.

Zhan, L.

Z. Zhang, L. Zhan, K. Xu, J. Wu, Y. Xia, and J. Lin, “Multi-wavelength fiber laser with fine adjustment, based on nonlinear polarization rotation and birefringence fiber filter,” Opt. Lett.33(4), 324–326 (2008).
[CrossRef] [PubMed]

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

Zhang, Z.

Zhao, L.

Zhou, X.

Zhou, Y.

Appl. Phys. B (1)

A. M. Ramzia Salem, M. H. Al-Mansoori, H. Hizam, S. B. Mohd Noor, M. H. Abu Bakar, and M. A. Mahdi, “Multi-wavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber,” Appl. Phys. B103(2), 363–368 (2011).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Boscolo, R. Bhamber, and S. K. Turitsyn, “Design of Raman-based nonlinear loop mirror for all-optical 2R regeneration of differential phase-shift-keying transmission,” IEEE J. Quantum Electron.42(7), 619–624 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B. Min, P. Kim, and N. Park, “Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin-Raman multi-wavelength comb generation in dispersion compensating fiber,” IEEE Photon. Technol. Lett.13(12), 1352–1354 (2001).
[CrossRef]

Y. J. Song, L. Zhan, S. Hu, Q. H. Ye, and Y. X. Xia, “Tunable multi-wavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter,” IEEE Photon. Technol. Lett.16(9), 2015–2017 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. (1)

N. A. M. Ahmad Hambali, M. H. Al-Mansoori, M. Ajiya, A. A. A. Bakar, S. Hitam, and M. A. Mahdi, “Multi-wavelength Brillouin-Raman ring-cavity fiber laser with 22-GHz spacing,” Laser Phys.21(9), 1656–1660 (2011).
[CrossRef]

Opt. Express (7)

M. P. Fok and C. Shu, “Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser,” Opt. Express14(7), 2618–2624 (2006).
[CrossRef] [PubMed]

X. Feng, H. Y. Tam, and P. K. Wai, “Stable and uniform multiwavelength erbium-doped fiber laser using nonlinear polarization rotation,” Opt. Express14(18), 8205–8210 (2006).
[CrossRef] [PubMed]

A. K. Zamzuri, M. A. Mahdi, A. Ahmad, M. I. Md Ali, and M. H. Al-Mansoori, “Flat amplitude multiwavelength Brillouin-Raman comb fiber laser in Rayleigh-scattering-enhanced linear cavity,” Opt. Express15(6), 3000–3005 (2007).
[CrossRef] [PubMed]

J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express19(15), 14682–14689 (2011).
[CrossRef] [PubMed]

G. Mamdoohi, A. R. Sarmani, A. F. Abas, M. H. Yaacob, M. Mokhtar, and M. A. Mahdi, “20 GHz spacing multi-wavelength generation of Brillouin-Raman fiber laser in a hybrid linear cavity,” Opt. Express21(16), 18724–18732 (2013).
[CrossRef] [PubMed]

A. K. Zamzuri, M. A. Mahdi, M. H. Al-Mansoori, N. M. Samsuri, A. Ahmad, and M. S. Islam, “OSNR variation of multiple laser lines in Brillouin-Raman fiber laser,” Opt. Express17(19), 16904–16910 (2009).
[CrossRef] [PubMed]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express13(1), 142–147 (2005).
[CrossRef] [PubMed]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for a multi-wavelength BRFL utilizing an enhanced nonlinear amplifying loop mirror. The mirror (M) is utilized in the entire assessment but the characterization of transmitted and reflected beams at the respective port 2 and 1 of the VOC are carried out without the mirror.

Fig. 2
Fig. 2

(a) Output power flow of the NALM (no mirror) and (b) the number of lasing channels (with mirror) against the coupling ratio at P 1 / P 2 (BP power = 5 dBm, BP wavelength = 1555 nm, RPU power = 300 mW).

Fig. 3
Fig. 3

Illustrations of multi-wavelength lasing spectra for (a) odd-orders and (b) even-orders (no mirror, BP wavelength = 1555 nm, BP power = 5 dBm, RPU power = 300 mW and CR = 99/1).

Fig. 4
Fig. 4

Output spectra of multi-wavelength BRFL at 200, 300 and 500 mW of RPU power (with mirror, CR = 99/1, BP power = 5 dBm, BP wavelength = 1555 nm).

Fig. 5
Fig. 5

Effect of BP power variations on the transmitted power, (no mirror, RPU = 300 mW, BP wavelength = 1555 nm, CR = 99/1).

Fig. 6
Fig. 6

Multiwavelength output spectra when the BP power is set at −2.6 dBm and 5 dBm, the red spectral profile was taken from Fig. 4 for visual depiction (with mirror, CR = 99/1, BP wavelength = 1555 nm, RPU power = 300 mW). The inset shows the free-lasing mode profile obtained when the BP power is switched-off.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P 1 ' = ( α A in exp( c 1 +iαγ L eff,1 | A in | 2 ) ) 2 , P 1 ' = ( i (1α) A in exp( c 2 +i(1α)γ L eff,2 | A in | 2 ) ) 2 ,
γ= 2π n 2* λ A eff .
c 1, = 0 L g 1 (z)dz, c 2 = 0 L g 2 (z)dz.
L eff,1 = 0 L dzexp[ 2 0 z d z g 1 ( z ) ] , L eff,2 = 0 L dzexp[ 2 z L d z g 2 ( z ) ] ,
g 1 (z)= Γ s + g R exp(2 Γ p z), g 2 (z)= Γ s + g R exp(2 Γ p (Lz)).

Metrics