Abstract

One-, two- or three-dimensional arrays of closely spaced silver nanoparticles may lead to new optical properties, due to short or long range coupling between their resonant surface plasmons, so that the spatially controlled growth of silver nanoparticles provides an efficient way to tune their optical properties. Towards this way, we present here the periodic pattern of a glass surface with silver nanoparticles by continuous ultraviolet laser exposure. The formation of the 160 nm period pattern is well described by an interference-based model which agrees with the experimental conclusions, mainly obtained by various forms of microscopy. Statistical approach based on the autocorrelation function gives quantitative description about the quality of the order in the periodic structure and about the nanoparticles averaged diameter (80 nm). We also present the optical extinction spectrum of the Laser Induced Periodic Surface Structure (LIPSS)-containing area of the glass, which unusually shows several bands in the visible range. The period of 160 nm of the periodic structure is short enough to allow coupling between nanoparticles, which makes it a possible candidate for plasmon-based optical applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Ramaswamy and R. V. R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
    [CrossRef]
  2. M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
    [CrossRef]
  3. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
    [CrossRef]
  4. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
    [CrossRef]
  5. F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).
  6. J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
    [CrossRef]
  7. F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
    [CrossRef]
  8. A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
    [CrossRef]
  9. G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
    [CrossRef]
  10. M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett.35(15), 2576–2578 (2010).
    [CrossRef] [PubMed]
  11. H. S. Won and S. H. Song, “Metallic nanocluster gratings generated by near-field coupling of localized surface plasmons,” Opt. Express14(24), 11814–11822 (2006).
    [CrossRef] [PubMed]
  12. K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
    [CrossRef]
  13. K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
    [CrossRef]
  14. F. Goutaland, M. Sow, N. Ollier, and F. Vocanson, “Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure,” Opt. Mater. Express2(4), 350–357 (2012).
    [CrossRef]
  15. J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
    [CrossRef]
  16. S. Malynych and G. Chumanov, “Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays,” J. Am. Chem. Soc.125(10), 2896–2898 (2003).
    [CrossRef] [PubMed]
  17. R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
    [CrossRef]
  18. M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
    [CrossRef]
  19. J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
    [CrossRef]
  20. R. M. Osgood and D. J. Ehrlich, “Optically induced microstructures in laser-photodeposited metal films,” Opt. Lett.7(8), 385–387 (1982).
    [CrossRef] [PubMed]
  21. F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, and O. Parriaux, “Evidence of surface plasmon resonance in ultrafast laser-induced ripples,” Opt. Express19(10), 9035–9043 (2011).
    [CrossRef] [PubMed]
  22. A. E. Siegman and P. M. Fauchet, “Stimulated Wood's anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986).
    [CrossRef]
  23. H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).
  24. I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
    [CrossRef]
  25. M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
    [CrossRef]
  26. A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
    [CrossRef]

2012 (2)

F. Goutaland, M. Sow, N. Ollier, and F. Vocanson, “Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure,” Opt. Mater. Express2(4), 350–357 (2012).
[CrossRef]

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

2011 (1)

2010 (2)

K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
[CrossRef]

M. Ranjan, T. W. H. Oates, S. Facsko, and W. Möller, “Optical properties of silver nanowire arrays with 35 nm periodicity,” Opt. Lett.35(15), 2576–2578 (2010).
[CrossRef] [PubMed]

2009 (1)

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

2008 (2)

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

2006 (1)

2005 (1)

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

2003 (3)

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

S. Malynych and G. Chumanov, “Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays,” J. Am. Chem. Soc.125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

2002 (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

2001 (1)

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

1998 (1)

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

1995 (1)

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

1991 (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

1988 (1)

R. V. Ramaswamy and R. V. R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

1986 (1)

A. E. Siegman and P. M. Fauchet, “Stimulated Wood's anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986).
[CrossRef]

1983 (2)

R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
[CrossRef]

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

1982 (3)

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

R. M. Osgood and D. J. Ehrlich, “Optically induced microstructures in laser-photodeposited metal films,” Opt. Lett.7(8), 385–387 (1982).
[CrossRef] [PubMed]

H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).

1965 (1)

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Ahangary, A.

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

Andreazza-Vignolle, C.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Antonov, I.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

Arnold, G. W.

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Aussenegg, F. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Azizian-Kalandaragh, Y.

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

Bass, F.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

Battaglin, G.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Berg, K.-J.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Berger, A.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Biegelsen, D. K.

R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
[CrossRef]

Birnbaum, M.

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

Blondeau, J. P.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Bonelli, M.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

Boragno, C.

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

Boukenter, A.

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

Bounhalli, M.

Buatier de Mongeot, F.

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

Caccavale, F.

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Cattaruzza, E.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

Chiappe, D.

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

Chumanov, G.

S. Malynych and G. Chumanov, “Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays,” J. Am. Chem. Soc.125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

Colombier, J. P.

De Marchi, G.

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Duan, X.-M.

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

Dzierzega, K.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Ehrlich, D. J.

Facsko, S.

Falconieri, M.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

Fauchet, P. M.

A. E. Siegman and P. M. Fauchet, “Stimulated Wood's anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986).
[CrossRef]

Faure, N.

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Garrelie, F.

Gonella, F.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Goutaland, F.

F. Goutaland, M. Sow, N. Ollier, and F. Vocanson, “Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure,” Opt. Mater. Express2(4), 350–357 (2012).
[CrossRef]

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

Graener, H.

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Harnagea, C.

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Hawkins, W. G.

R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
[CrossRef]

Heilmann, A.

K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
[CrossRef]

Hesse, D.

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Hofmeister, H.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Kaempfe, M.

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Kaganovskii, Y.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

Kaneko, K.

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

Kawata, S.

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

Khalesifard, H. R.

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

Krenn, J. R.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Leitner, A.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Lipovskii, A.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

Loeschner, K.

K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
[CrossRef]

Malynych, S.

S. Malynych and G. Chumanov, “Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays,” J. Am. Chem. Soc.125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

Marchi, G. D.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

Marin, E.

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

Massabo, D.

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

Mattei, G.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Mazzoldi, P.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Meneghini, C.

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Michalon, J. Y.

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

Miotello, A.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

Möller, W.

Mostafavi-Amjad, J.

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

Nemanich, R. J.

R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
[CrossRef]

Niry, M. D.

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

Oates, T. W. H.

Ollier, N.

Osgood, R. M.

Parriaux, O.

Pellerin, N.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Pellerin, S.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Pigeon, F.

Piovesan, M.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

Polloni, R.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

Preston, J. S.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

Quaranta, A.

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Ramaswamy, R. V.

R. V. Ramaswamy and R. V. R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Ranjan, M.

Reynaud, S.

Rosenbluh, M.

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

Sada, C.

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Salvetti, G.

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Seifert, G.

K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
[CrossRef]

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Siegman, A. E.

A. E. Siegman and P. M. Fauchet, “Stimulated Wood's anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986).
[CrossRef]

Sipe, J. E.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

Song, S. H.

Sow, M.

Srivastava, R. V. R.

R. V. Ramaswamy and R. V. R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Sun, H.-B.

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

Syrowatka, F.

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

Toma, A.

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

Tonchev, S.

van Driel, H. M.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).

Vial, V.

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

Vocanson, F.

Won, H. S.

Young, J. F.

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

Appl. Phys. Lett. (6)

M. Falconieri, G. Salvetti, E. Cattaruzza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, “Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica,” Appl. Phys. Lett.73(3), 288–290 (1998).
[CrossRef]

F. Goutaland, E. Marin, J. Y. Michalon, and A. Boukenter, “Growth of silver nanoparticles of variable and controlled diameter in silica-based and soda-lime glasses by simultaneous continuous ultraviolet irradiation and heat treatment,” Appl. Phys. Lett.94(18), 181108 (2009).
[CrossRef]

A. Toma, D. Chiappe, D. Massabo, C. Boragno, and F. Buatier de Mongeot, “Self-organized metal nanowire arrays with tunable optical anisotropy,” Appl. Phys. Lett.93(16), 163104 (2008).
[CrossRef]

K. Kaneko, H.-B. Sun, X.-M. Duan, and S. Kawata, “Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix,” Appl. Phys. Lett.83(7), 1426–1429 (2003).
[CrossRef]

J. F. Young, J. E. Sipe, J. S. Preston, and H. M. Van Driel, “Laser‐induced periodic surface damage and radiation remnants,” Appl. Phys. Lett.41(3), 261–264 (1982).
[CrossRef]

A. Miotello, M. Bonelli, G. D. Marchi, G. Mattei, P. Mazzoldi, C. Sada, and F. Gonella, “Formation of silver nanoclusters by excimer–laser interaction in silver-exchanged soda-lime glass,” Appl. Phys. Lett.79(15), 2456–2458 (2001).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

G. Seifert, M. Kaempfe, F. Syrowatka, C. Harnagea, D. Hesse, and H. Graener, “Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass,” Appl. Phys., A Mater. Sci. Process.81(4), 799–803 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman and P. M. Fauchet, “Stimulated Wood's anomalies on laser-illuminated surfaces,” IEEE J. Quantum Electron.22(8), 1384–1403 (1986).
[CrossRef]

J. Am. Chem. Soc. (1)

S. Malynych and G. Chumanov, “Light-Induced Coherent Interactions between Silver Nanoparticles in Two-Dimensional Arrays,” J. Am. Chem. Soc.125(10), 2896–2898 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

K. Loeschner, G. Seifert, and A. Heilmann, “Self-organized, gratinglike nanostructures in polymer films with embedded metal nanoparticles induced by femtosecond laser irradiation,” J. Appl. Phys.108(7), 073114 (2010).
[CrossRef]

I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, and A. Lipovskii, “Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam,” J. Appl. Phys.93(5), 2343–2348 (2003).
[CrossRef]

M. D. Niry, J. Mostafavi-Amjad, H. R. Khalesifard, A. Ahangary, and Y. Azizian-Kalandaragh, “Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam,” J. Appl. Phys.111(3), 033111 (2012).
[CrossRef]

M. Birnbaum, “Semiconductor surface damage produced by ruby lasers,” J. Appl. Phys.36(11), 3688–3689 (1965).
[CrossRef]

J. Cryst. Growth (1)

J. P. Blondeau, S. Pellerin, V. Vial, K. Dzierzega, N. Pellerin, and C. Andreazza-Vignolle, “Influence of pulsed laser irradiation on precipitation of silver nanoparticles in glass,” J. Cryst. Growth311(1), 172–184 (2008).
[CrossRef]

J. Lightwave Technol. (1)

R. V. Ramaswamy and R. V. R. Srivastava, “Ion-exchanged glass waveguides: a review,” J. Lightwave Technol.6(6), 984–1000 (1988).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G. W. Arnold, G. Battaglin, and G. Mattei, “Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass,” Nucl. Instrum. Methods Phys. Res. B96, 382–386 (1995).

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (3)

J. E. Sipe, J. F. Young, J. S. Preston, and H. M. van Driel, “Laser-induced periodic surface structure. I. Theory,” Phys. Rev. B27(2), 1141–1154 (1983).
[CrossRef]

R. J. Nemanich, D. K. Biegelsen, and W. G. Hawkins, “Aligned, coexisting liquid and solid regions in laser-annealed Si,” Phys. Rev. B27(12), 7817–7819 (1983).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

H. M. Van Driel, J. E. Sipe, and J. F. Young, “Laser-Induced Periodic Surface Structure on Solids: A Universal Phenomenon,” Phys. Rev. Lett.49, 1955–1958 (1982).

Z. Phys. D (1)

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver nanoparticles in glass surface layers produced by silver-sodium ion exchange––their concentration and size depth profiles,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a): SEM image of a laser spot inscribed during 500 ms; (b): zoom within the LIPPS containing area.

Fig. 2
Fig. 2

(a): SEM image of the periodic arrangement between silver nanoparticles observed after an irradiation time of 1s; (b): SEM image of the periodic arrangement between silver nanoparticles observed after an irradiation time of 3s.

Fig. 3
Fig. 3

curves of the autocorrelation function calculated from the SEM images: curve (a) corresponds to Fig. 1(b), curve (b) to Fig. 2(a) and curve (c) to Fig. 2(b).

Fig. 4
Fig. 4

surface profile plot, extracted along the line shown in the inset of the graph, showing the regularity of the silver nanoparticles alignment.

Fig. 5
Fig. 5

(a): optical microscope image (reflexion mode) showing the position and length of the two different areas across which the absorption spectra depicted in Fig. 5(b) have been recorded: area (1): region containing the periodic alignment of silver nanoparticles; area (2): outer region which contain large silver nanoparticles; (b): absorption spectra of areas 1 and 2 .

Fig. 6
Fig. 6

(a): 3D AFM image corrected from the slope of the glass droplet; (b): height profile extracted absorption along the black line shown in the inset (AFM image showing the LIPSS superimposed on the glass droplet)

Fig. 7
Fig. 7

(a): Geometry of the laser beam incidence to a rough surface, used to model the growth of LIPSS; (b): curve of the efficacy factor η versus the normalized wave vectors kx and ky. The maximum of the curve shows that LIPSS growth in the y direction only and gives a period of 163 nm; (c): 2D gray scale map of the efficacy factor η as function of the normalized wave vectors kx and ky. The values of η are encoded in a gray scale with darker tints representing larger values.

Fig. 8
Fig. 8

(a): 2D FT of Fig. 1(b); (b): 2D FT of Fig. 2b. The sickle-shaped features, expected from the calculations displayed in Fig. 7(c), indicate a LIPSS period of about 165 nm in each case.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(k) η (k, ki) |b(k)|

Metrics