Abstract

Little is known about mechanical processes of alveolar tissue during mechanical ventilation. Optical coherence tomography (OCT) as a three-dimensional and high-resolution imaging modality can be used to visualize subpleural alveoli during artificial ventilation. The quality of OCT images can be increased by matching the refractive index inside the alveoli to the one of tissue via liquid-filling. Thereby, scattering loss can be decreased and higher penetration depth and tissue contrast can be achieved. We show the liquid-filling of alveolar structures verified by optical coherence tomography and intravital microscopy (IVM) and the advantages of index matching for OCT imaging of subpleural alveoli in a mouse model using a custom-made liquid ventilator.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
    [CrossRef] [PubMed]
  2. D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
    [CrossRef] [PubMed]
  3. S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
    [CrossRef] [PubMed]
  4. A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).
  5. P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
    [CrossRef] [PubMed]
  6. K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
    [CrossRef] [PubMed]
  7. S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
    [CrossRef] [PubMed]
  8. N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
    [CrossRef] [PubMed]
  9. S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
    [CrossRef]
  10. C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
    [CrossRef] [PubMed]
  11. T. A. Wilson and H. Bachofen, “A model for mechanical structure of the alveolar duct,” J. Appl. Physiol.52(4), 1064–1070 (1982).
    [PubMed]

2012 (1)

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

2011 (2)

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

2009 (2)

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
[CrossRef] [PubMed]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

2006 (1)

A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).

2005 (1)

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

2003 (1)

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

1992 (1)

S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
[CrossRef]

1988 (1)

P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
[CrossRef] [PubMed]

1982 (1)

T. A. Wilson and H. Bachofen, “A model for mechanical structure of the alveolar duct,” J. Appl. Physiol.52(4), 1064–1070 (1982).
[PubMed]

Bachofen, H.

T. A. Wilson and H. Bachofen, “A model for mechanical structure of the alveolar duct,” J. Appl. Physiol.52(4), 1064–1070 (1982).
[PubMed]

Bartlett, R. H.

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

Bouma, B. E.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Brenner, M.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Chen, Z.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Colt, H.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Curatolo, A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Gehr, P.

S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
[CrossRef]

Guo, S.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Guttmann, J.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

Haberstroh, J.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

Hanna, N.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Hirschl, R. B.

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

Jung, W.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Kang, D.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Kirk, R. W.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Knels, L.

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
[CrossRef] [PubMed]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

Koch, E.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
[CrossRef] [PubMed]

Koch, T.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

Koen, P. A.

P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
[CrossRef] [PubMed]

Krueger, A.

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

Kuebler, W. M.

A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).

Lee, M.

S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
[CrossRef]

Liu, L.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Matsuda, K.

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

McLaughlin, R. A.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Meissner, S.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
[CrossRef] [PubMed]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

Milliken, J.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Mukai, D.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Namati, E.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Noble, P. B.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Pries, A. R.

A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).

Quirk, B. C.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Runck, H.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

Saltzman, D.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Sampson, D. D.

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

Sasse, S.

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Sawada, S.

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

Schumann, S.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

Schürch, S.

S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
[CrossRef]

Schwenninger, D.

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

Shaffer, T. H.

P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
[CrossRef] [PubMed]

Tabuchi, A.

A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).

Tearney, G. J.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Unglert, C. I.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Warger, W. C.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Wilson, T. A.

T. A. Wilson and H. Bachofen, “A model for mechanical structure of the alveolar duct,” J. Appl. Physiol.52(4), 1064–1070 (1982).
[PubMed]

Wolfson, M. R.

P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
[CrossRef] [PubMed]

Yoo, H.

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

Crit. Care Med. (1)

K. Matsuda, S. Sawada, R. H. Bartlett, and R. B. Hirschl, “Effect of ventilatory variables on gas exchange and hemodynamics during total liquid ventilation in a rat model,” Crit. Care Med.31(7), 2034–2040 (2003).
[CrossRef] [PubMed]

FASEB J. (1)

A. Tabuchi, A. R. Pries, and W. M. Kuebler, “A new model for intravital microscopy of the murine pulmonary microcirculation,” FASEB J.20, A285–A286 (2006).

J. Appl. Physiol. (1)

T. A. Wilson and H. Bachofen, “A model for mechanical structure of the alveolar duct,” J. Appl. Physiol.52(4), 1064–1070 (1982).
[PubMed]

J. Biomed. Opt. (5)

C. I. Unglert, E. Namati, W. C. Warger, L. Liu, H. Yoo, D. Kang, B. E. Bouma, and G. J. Tearney, “Evaluation of optical reflectance techniques for imaging of alveolar structure,” J. Biomed. Opt.17(7), 071303 (2012).
[CrossRef] [PubMed]

B. C. Quirk, R. A. McLaughlin, A. Curatolo, R. W. Kirk, P. B. Noble, and D. D. Sampson, “In situ imaging of lung alveoli with an optical coherence tomography needle probe,” J. Biomed. Opt.16(3), 036009 (2011).
[CrossRef] [PubMed]

D. Schwenninger, H. Runck, S. Schumann, J. Haberstroh, S. Meissner, E. Koch, and J. Guttmann, “Intravital microscopy of subpleural alveoli via transthoracic endoscopy,” J. Biomed. Opt.16(4), 046002 (2011).
[CrossRef] [PubMed]

S. Meissner, L. Knels, and E. Koch, “Improved three-dimensional Fourier domain optical coherence tomography by index matching in alveolar structures,” J. Biomed. Opt.14(6), 064037 (2009).
[CrossRef] [PubMed]

S. Meissner, L. Knels, A. Krueger, T. Koch, and E. Koch, “Simultaneous three-dimensional optical coherence tomography and intravital microscopy for imaging subpleural pulmonary alveoli in isolated rabbit lungs,” J. Biomed. Opt.14(5), 054020 (2009).
[CrossRef] [PubMed]

J. Thorac. Cardiovasc. Surg. (1)

N. Hanna, D. Saltzman, D. Mukai, Z. Chen, S. Sasse, J. Milliken, S. Guo, W. Jung, H. Colt, and M. Brenner, “Two-dimensional and 3-dimensional optical coherence tomographic imaging of the airway, lung, and pleura,” J. Thorac. Cardiovasc. Surg.129(3), 615–622 (2005).
[CrossRef] [PubMed]

Pediatr. Res. (1)

P. A. Koen, M. R. Wolfson, and T. H. Shaffer, “Fluorocarbon ventilation: Maximal expiratory flows and Co2 elimination,” Pediatr. Res.24(3), 291–296 (1988).
[CrossRef] [PubMed]

Pure Appl. Chem. (1)

S. Schürch, M. Lee, and P. Gehr, “Pulmonary surfactant: Surface properties and function of alveolar and airway surfactant,” Pure Appl. Chem.64(11), 1745–1750 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Ventilator setup for air and liquid ventilation. Inspiration and expiration unit consist of high precision linear stages (3) and common syringes (1). The exchange of breathing medium both from air to liquid and vice versa, can be performed without disconnecting the animal from the ventilator by using two external reservoirs (2). The custom-made software allows online access to ventilation parameters in a volume- or pressure- controlled ventilation mode and displays pressure, tidal volume and flow in each ventilation cycle. Other components: (4) pressure transducer; (5) operation table; (6) peristaltic pump; (7) membrane oxygenator; (8) CO2 absorbents; (9) gas diaphragm pump.

Fig. 2
Fig. 2

Time course of liquid-filling in the lung. One can compare the change of OCT image quality due to the different states of liquid-filling during one experiment. The pictures show OCT cross sections of air ventilated tissue as initial state and images at 5, 12, 18 and 30 min after beginning TLV. The penetration depth and also the structural resolution increase, whereas image artifacts are decreased showing sharp tissue walls without Fresnel reflections at air-tissue interface. The diagram shows three different plots of a maximum intensity projection from the 3D OCT data stacks of air ventilation, after 12 minutes and 30 minutes of TLV, respectively. The surface was aligned to an image depth of 460 µm to compare the different plots. The mean signal attenuation is comparable for air and liquid ventilation, but due to the reduction of scattering loss an increase of signal from higher depths can be observed (see arrow). Scale bar is 200 µm.

Fig. 3
Fig. 3

Transition from an air-filled to a liquid-filled region in OCT and IVM. These pictures show the influence of liquid-filling for OCT and IVM lung imaging after 18 minutes of total liquid ventilation. While image quality for OCT is considerably increased in the liquid-filled area, the contrast for IVM is decreased due to the refractive index matching. The depth of tissue visualization is nearly tripled in the liquid-filled area due to the reduction of scattering loss. The arrows a, b and c in the 3D OCT image (left) were used for a better understanding of the OCT and IVM en face view (middle row) and the OCT cross section (right). For the 3D image, the pleura was hidden to get a look on the first layer of subpleural alveoli. Scale bar is 200 µm.

Tables (1)

Tables Icon

Table 1 Characteristic properties of perfluorodecalin compared to water and blood. Due to its high solubility for oxygen and carbone dioxide and its refractive index similar to the one of water, perfluorodecalin is an excellent candidate for improved OCT imaging of lung tissue during in vivo experiments.

Metrics