Abstract

The strong near-field optical interaction between two adjacent nanoholes milled in a gold film is investigated. A single nanohole is modeled as a magnetic dipole described by the simple relation between the magnetic- and electric-polarization in electromagnetic theory. To elucidate the role of the electric and magnetic fields in near-field characteristics of a nanohole illuminated by an optical plane-wave, the normalized electric and magnetic power amplitudes are accordingly introduced. This is extended to model the strong optical interaction of the two adjacent nanoholes in the near-field regime, leading to the magnetic coupled-dipole approximation (MCDA). It is shown that the optical transmission spectrum of the nanostructure may exhibit hybridized resonant peaks, depending on the configuration or the polarization. Compared to the known effects in the optical properties of a pair of metal nanoparticles for which the electric-field of the incident light is crucial, here it is illustrated that the magnetic-field of the incident light plays the dominant role in defining the optical properties of the complement structure. Thus, the strength of the interaction of the two adjacent nanoholes and the resulting hybridized plasmon resonances are strongly depends on the magnetic-field orientation in respect to the pair axis as well as on the separating distance of the nanoholes. The theoretical findings are supported by the electromagnetic computations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [CrossRef] [PubMed]
  5. H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  7. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
    [CrossRef] [PubMed]
  8. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
    [CrossRef] [PubMed]
  9. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [CrossRef]
  10. T. Pakizeh, M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
    [CrossRef] [PubMed]
  11. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
    [CrossRef]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
    [CrossRef] [PubMed]
  13. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  14. D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
    [CrossRef]
  15. A. Degiron, T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7(2), S90–S96 (2005).
    [CrossRef]
  16. J. M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198(4–6), 257–263 (2001).
    [CrossRef]
  17. Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
    [CrossRef]
  18. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  19. T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).
  20. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
    [CrossRef]
  21. A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef] [PubMed]
  22. T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
    [CrossRef]
  23. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
    [CrossRef]
  24. R. Collin, Field Theory of Guided Waves (IEEE, 1991).
  25. L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves (Wiley, 2001).
  26. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, P. Johansson, “Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films,” Opt. Express 16(8), 5609–5616 (2008).
    [CrossRef] [PubMed]
  28. D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 1997).
  29. L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
    [CrossRef] [PubMed]
  30. P. K. Jain, M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
    [CrossRef]
  31. S. H. Chang, S. Gray, G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  33. T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008).
    [CrossRef]
  34. T. Pakizeh, “Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths,” J. Opt. Soc. Am. B 29(9), 2446–2452 (2012).
    [CrossRef]
  35. P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
    [CrossRef]
  36. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  37. T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys Chem. C 115(44), 21826–21831 (2011).
    [CrossRef]

2013 (1)

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[CrossRef]

2012 (1)

2011 (1)

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys Chem. C 115(44), 21826–21831 (2011).
[CrossRef]

2010 (1)

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

2009 (1)

T. Pakizeh, M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

2006 (2)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005 (6)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

A. Degiron, T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

S. H. Chang, S. Gray, G. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
[CrossRef] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

2004 (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (1)

J. M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198(4–6), 257–263 (2001).
[CrossRef]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999 (2)

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

A. D. Rakic, A. B. Djurišic, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[CrossRef]

Abrishamian, M. S.

Aizpurua, J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Alaverdyan, Y.

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, P. Johansson, “Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films,” Opt. Express 16(8), 5609–5616 (2008).
[CrossRef] [PubMed]

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Alegret, J.

Altug, H.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[CrossRef]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Borjesson, L.

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Chang, S. H.

Chang, T.-Y.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Degiron, A.

A. Degiron, T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Djurišic, A. B.

Dmitriev, A.

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

A. Degiron, T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Elazar, J. M.

El-Sayed, M. A.

P. K. Jain, M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Eurenius, L.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

García de Abajo, F. J.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Garcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Granpayeh, N.

Gray, S.

Grupp, D. E.

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

Gunnarsson, L.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

Hanarp, P.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Hillenbrand, R.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Höök, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Jain, P. K.

P. K. Jain, M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

Johansson, P.

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Käll, M.

T. Pakizeh, M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008).
[CrossRef]

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, P. Johansson, “Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films,” Opt. Express 16(8), 5609–5616 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kasemo, B.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Majewski, M. L.

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Olofsson, L.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Olsson, E.

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Pakizeh, T.

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[CrossRef]

T. Pakizeh, “Unidirectional radiation of a magnetic dipole coupled to an ultracompact nanoantenna at visible wavelengths,” J. Opt. Soc. Am. B 29(9), 2446–2452 (2012).
[CrossRef]

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys Chem. C 115(44), 21826–21831 (2011).
[CrossRef]

T. Pakizeh, M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[CrossRef] [PubMed]

T. Pakizeh, A. Dmitriev, M. S. Abrishamian, N. Granpayeh, M. Käll, “Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches,” J. Opt. Soc. Am. B 25(4), 659–667 (2008).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Prikulis, J.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Rakic, A. D.

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

Schatz, G.

Schatz, G. C.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Sepulveda, B.

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

Sepúlveda, B.

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

Sutherland, D.

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Thio, T.

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Vigoureux, J. M.

J. M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198(4–6), 257–263 (2001).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, H. X.

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

Zou, S.

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

Adv. Mater. (1)

D. E. Grupp, H. J. Lezec, T. Thio, T. W. Ebbesen, “Beyond the Bethe limit: Tunable enhanced light transmission through a single sub-wavelength aperture,” Adv. Mater. 11(10), 860–862 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, H. Altug, “Integrated nanoplasmonic nanofluidic biosensors with targeted delivery of analytes,” Appl. Phys. Lett. 96(2), 021101 (2010).
[CrossRef]

J. Opt. (1)

T. Pakizeh, “Optical absorption of nanoparticles described by an electronic local interband transition,” J. Opt. 15(2), 025001 (2013).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

A. Degiron, T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A Pure Appl. Opt. 7(2), S90–S96 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys Chem. C (1)

T. Pakizeh, “Optical absorption of plasmonic nanoparticles in presence of a local interband transition,” J. Phys Chem. C 115(44), 21826–21831 (2011).
[CrossRef]

J. Phys. Chem. B (2)

L. Gunnarsson, T. Rindzevicius, J. Prikulis, B. Kasemo, M. Käll, S. Zou, G. C. Schatz, “Confined plasmons in nanofabricated single silver particle pairs: Experimental observations of strong interparticle interactions,” J. Phys. Chem. B 109(3), 1079–1087 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, B. Sepulveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, F. J. García de Abajo, “Nanohole plasmons in optically thin gold films,” J. Phys. Chem. B 111(3), 1207–1212 (2007).

J. Phys. Chem. C (1)

P. K. Jain, M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112(13), 4954–4960 (2008).
[CrossRef]

Nano Lett. (5)

P. Nordlander, C. Oubre, E. Prodan, K. Li, M. I. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett. 4(5), 899–903 (2004).
[CrossRef]

J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, M. Käll, “Optical spectroscopy of nanometric holes in thin gold films,” Nano Lett. 4(6), 1003–1007 (2004).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, W. E. Moerner, “Gap-dependent optical coupling of single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[CrossRef]

T. Pakizeh, M. Käll, “Unidirectional ultracompact optical nanoantennas,” Nano Lett. 9(6), 2343–2349 (2009).
[CrossRef] [PubMed]

Nat. Phys. (1)

Y. Alaverdyan, B. Sepulveda, L. Eurenius, E. Olsson, M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[CrossRef]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. M. Vigoureux, “Analysis of the Ebbesen experiment in the light of evanescent short range diffraction,” Opt. Commun. 198(4–6), 257–263 (2001).
[CrossRef]

Opt. Express (2)

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66(7–8), 163–182 (1944).
[CrossRef]

Phys. Rev. B (1)

P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (4)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, S. R. J. Brueck, “Experimental demonstration of near-infrared negative-index metamaterials,” Phys. Rev. Lett. 95(13), 137404 (2005).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

H. X. Xu, E. J. Bjerneld, M. Käll, L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Science (3)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312(5775), 892–894 (2006).
[CrossRef] [PubMed]

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (6)

L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

R. Collin, Field Theory of Guided Waves (IEEE, 1991).

L. Tsang, J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves (Wiley, 2001).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

D. M. Pozar, Microwave Engineering, 3rd ed. (Wiley, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The schematic of the electric (P) and magnetic (M) dipoles induced in a subwavelength rectangular hole (a × b), milled in an Au film with thickness d.

Fig. 2
Fig. 2

(a) A comparison of the calculated normalized transmission of the single circular nanohole of radius r = 100 nm in a d = 100 nm Au film on a substrate (n = 1.5), using the Drude model (blue solid-line), compared with the results reported in Ref [31]. (circular-dots). Using the more accurate model (DL), the transmission spectra are calculated and shown for the circular nanohole (brown dashed-line), the same sized square shaped nanohole (red dash-dotted line), and for a rectangular shaped nanohole with a = 100 nm and b = 200 nm (green thick solid-line). Normalized intensities of (b) the electric field, and (c) the magnetic field of the rectangular nanohole milled in an Au film with d = 100 nm at λ = 720 nm.

Fig. 3
Fig. 3

(a) The normalized real (blue solid-curve) and imaginary (red solid-curve) parts of α y m [Eq. (9)] for a nanohole with a = 100 nm, b = 200 nm, and d = 100 nm, illuminated by an x-polarized plane wave. (b) The simulated real and imaginary parts of the induced magnetic-field ( H y ) around the nanohole at point R ( 0 , y 0 , z 0 ) , shown in Fig. 2(a).

Fig. 4
Fig. 4

The calculated spectra of the normalized magnetic power amplitude, Am, for (a) the single nanohole, and (b) the two coupled nanoholes in the s-config. arrangement, with a = 100 nm, b = 200 nm, and distance Δ = 5, 10, and 15 nm. The calculated results in (a) and (b) are compared with the theoretical results.

Fig. 5
Fig. 5

The schematic representation of the coupling mechanism between two nanoparticles (right-column) and their complement nanoholes (left-column). The filed components of the normal incident light (E)inc, (H)inc), and the corresponding electric and magnetic dipoles for the s-config. [(a1), (b2)] and p-config. [(a2), (b1)] are denoted by the arrows.

Fig. 6
Fig. 6

(a) Schematic representation of two coupled nanoholes in the s-config., modeled by two coupled magnetic dipoles (M)1 and (M)2). (b) The normalized amplitude, and (c) the phase of α ˜ y m , obtained by theory (solid-line) and the nearfield simulation of the corresponding H y (dashed-line) for the nanostructure with Δ = 10 nm.

Fig. 7
Fig. 7

The normalized transmission spectra of two adjacent nanoholes arranged in (a) s-config., and (b) p-config. The nanoholes with a = 100 and b = 200 nm milled in an Au film with thickness d = 100 nm, with Δ = 5 (dash-dotted), 10 (solid-line), 15 nm (dashed-line), and the single rectangular nanohole (circular-line). The insets show the intensity of the induced magnetic-field ( | H y / H 0 | 2 ) for Δ = 10 nm, at the corresponding peak positions.

Fig. 8
Fig. 8

The resonance shift, Δ λ , of the modes versus the separating distance Δ for the s-config. (blue-solid and red-dashed curves) and p-config. (green dash-dot curve).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

× E = j ω μ 0 H - j ω μ 0 P m M s ,
× H = j ω ε 0 E - j ω P e J s ,
P e = ε 0 α e E ,
P m = α m H ,
× P m = j ω P e .
E = Φ e ,
H = Φ m ,
{ Φ e Φ m } = { B e sin ( k x x ) cos ( k y y ) B m cos ( k x x ) sin ( k y y ) } × [ C cos h ( k z ) + D sin h ( k z ) ] ,
α y m i [ M N k 0 2 M N k k 0 ] α x e ,
M i ( q ) ( ω ) = α q i m ( ω ) [ H 0 ( r , ω ) + j = 1 , j i n R i j ( q ) ( r , ω ) M j ( q ) ( ω ) ] ,
A e = 1 P 0 v E J d v ,
A m = 1 P 0 v H M d v ,
P 0 = 2 S 0 ( E 0 × H 0 ) n ^ d s ,
α ˜ y i m ( ω ) = α y i m ( ω ) [ 4 π s 3 ( 4 π s 3 + 2 α y j m ( ω ) e i k s ) ( 4 π ) 2 s 6 4 α y j m ( ω ) α y i m ( ω ) ] ,

Metrics