Abstract

We demonstrate for the first time a 300nm thick, 300μm × 300μm 2D dielectric photonic crystal slab membrane with a quality factor of 10,600 by coupling light to slightly perturbed dark modes through alternating nano-hole sizes. The newly created fundamental guided resonances greatly reduce nano-fabrication accuracy requirements. Moreover, we created a new layer architecture resulting in electric field enhancement at the interface between the slab and sensing regions, and spectral sensitivity of >800 nm/RIU, that is, >0.8 of the single-mode theoretical upper limit of spectral sensitivity.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  2. F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton.1(3–4), 267–291 (2012).
  3. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
    [CrossRef]
  4. P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol.22(2), 172–173 (2004).
    [CrossRef] [PubMed]
  5. B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
    [CrossRef] [PubMed]
  6. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
    [CrossRef]
  7. A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
    [CrossRef] [PubMed]
  8. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  9. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
    [CrossRef]
  10. J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
    [CrossRef] [PubMed]
  11. W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
    [CrossRef] [PubMed]
  12. S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
    [CrossRef] [PubMed]
  13. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
    [CrossRef] [PubMed]
  14. D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
    [CrossRef]
  15. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  16. S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
    [CrossRef]
  17. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
    [CrossRef] [PubMed]
  18. V. Lefèvre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B48(1), 53–58 (1997).
    [CrossRef]
  19. D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
    [CrossRef]
  20. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett.24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  21. F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).
  22. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
    [CrossRef] [PubMed]
  23. S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
    [CrossRef] [PubMed]
  24. E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
    [CrossRef] [PubMed]
  25. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
    [CrossRef] [PubMed]
  26. S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
    [CrossRef]
  27. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63(12), 125107 (2001).
    [CrossRef]
  28. M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
    [CrossRef] [PubMed]
  29. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university press, 2011).
  30. V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
    [CrossRef] [PubMed]
  31. O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
    [CrossRef] [PubMed]
  32. R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
    [CrossRef]
  33. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
    [CrossRef] [PubMed]
  34. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
    [CrossRef]
  35. K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter52(11), 7982–7986 (1995).
    [CrossRef] [PubMed]
  36. J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
    [CrossRef] [PubMed]
  37. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett.23(15), 1149–1151 (1998).
    [CrossRef] [PubMed]
  38. A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett.32(15), 2269–2271 (2007).
    [CrossRef] [PubMed]
  39. N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
    [CrossRef]
  40. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).
  41. V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183(10), 2233–2244 (2012).
    [CrossRef]
  42. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express19(11), 10029–10040 (2011).
    [CrossRef] [PubMed]
  43. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
    [CrossRef]
  44. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
    [CrossRef]
  45. S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
    [CrossRef] [PubMed]
  46. G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
    [CrossRef] [PubMed]
  47. D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
    [CrossRef] [PubMed]
  48. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009).
    [CrossRef] [PubMed]

2013 (3)

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

2012 (6)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
[CrossRef] [PubMed]

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183(10), 2233–2244 (2012).
[CrossRef]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton.1(3–4), 267–291 (2012).

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
[CrossRef] [PubMed]

2011 (2)

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express19(11), 10029–10040 (2011).
[CrossRef] [PubMed]

2010 (1)

2009 (6)

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
[CrossRef]

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17(26), 24224–24233 (2009).
[CrossRef] [PubMed]

2008 (5)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

J. T. Robinson, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express16(6), 4296–4301 (2008).
[CrossRef] [PubMed]

O. Kilic, M. Digonnet, G. Kino, and O. Solgaard, “Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry,” Opt. Express16(17), 13090–13103 (2008).
[CrossRef] [PubMed]

2007 (4)

A.-L. Fehrembach, A. Talneau, O. Boyko, F. Lemarchand, and A. Sentenac, “Experimental demonstration of a narrowband, angular tolerant, polarization independent, doubly periodic resonant grating filter,” Opt. Lett.32(15), 2269–2271 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
[CrossRef]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

2004 (2)

P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol.22(2), 172–173 (2004).
[CrossRef] [PubMed]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

2003 (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

2002 (2)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

2001 (2)

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63(12), 125107 (2001).
[CrossRef]

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

1999 (1)

1998 (3)

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with doubly periodic structures,” Opt. Lett.23(15), 1149–1151 (1998).
[CrossRef] [PubMed]

1997 (1)

V. Lefèvre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B48(1), 53–58 (1997).
[CrossRef]

1996 (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
[CrossRef] [PubMed]

1995 (2)

A. Serpengüzel, S. Arnold, and G. Griffel, “Excitation of resonances of microspheres on an optical fiber,” Opt. Lett.20(7), 654–656 (1995).
[CrossRef] [PubMed]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

1993 (1)

1992 (2)

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Altug, H.

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Arjavalingam, G.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Arnold, S.

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Berneschi, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Boyko, O.

Brenci, M.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Brommer, K. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Brueck, S. R.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Chakravarty, S.

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
[CrossRef] [PubMed]

Chan, L. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Chang, T.-Y.

Chen, L.

Chen, R. T.

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
[CrossRef] [PubMed]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Choi, C. J.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Chua, S.-L.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Combrié, S.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
[CrossRef]

Cosi, F.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Cremer, P. S.

P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol.22(2), 172–173 (2004).
[CrossRef] [PubMed]

Crozier, K. B.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

Cunningham, B. T.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

De Rossi, A.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
[CrossRef]

Digonnet, M.

El Beheiry, M.

Engin, S.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Fan, S.

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183(10), 2233–2244 (2012).
[CrossRef]

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express19(11), 10029–10040 (2011).
[CrossRef] [PubMed]

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

V. Liu, M. Povinelli, and S. Fan, “Resonance-enhanced optical forces between coupled photonic crystal slabs,” Opt. Express17(24), 21897–21909 (2009).
[CrossRef] [PubMed]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
[CrossRef] [PubMed]

Fan, X.

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Fehrembach, A.-L.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fruk, L.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Furusawa, A.

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Georgiades, N. P.

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

Gerken, M.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
[CrossRef] [PubMed]

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Giovannini, H.

Gobi, K.

D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
[CrossRef]

Gosangari, S. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

Griffel, G.

Gu, B.-Y.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

Hare, J.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

V. Lefèvre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B48(1), 53–58 (1997).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Harris, J. S.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Huang, M.

Ilchenko, V.

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

Jaquay, E.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

Jin, Y.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

Joannopoulos, J.

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

Joannopoulos, J. D.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
[CrossRef] [PubMed]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Kenis, P. J.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Kilic, O.

Kimble, H.

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

Kino, G.

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Lai, W.-C.

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
[CrossRef] [PubMed]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

Lee, J.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Lee, M. M.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Lee, R. K.

Lefevre-Seguin, V.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

Lefèvre-Seguin, V.

V. Lefèvre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B48(1), 53–58 (1997).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Lemarchand, F.

Levi, A.

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Levi, O.

M. El Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18(22), 22702–22714 (2010).
[CrossRef] [PubMed]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

Lin, S.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

Lipson, M.

Liu, V.

Logan, R.

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Lousse, V.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Martínez, L. J.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

Massad-Ivanir, N.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

McCall, S.

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Meade, R. D.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Mejia, C. A.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

Miura, N.

D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
[CrossRef]

Moscovitz, O.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nazirizadeh, Y.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
[CrossRef] [PubMed]

Nunzi Conti, G.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Ochiai, T.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63(12), 125107 (2001).
[CrossRef]

O'Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Pearton, S.

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Pelli, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Povinelli, M.

Povinelli, M. L.

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

Qiu, W.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Raimond, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Raimond, J.-M.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

Rappe, A. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Righini, G. C.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Robertson, W. M.

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of the photon dispersion relation in two-dimensional ordered dielectric arrays,” J. Opt. Soc. Am. B10(2), 322 (1993).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Robinson, J. T.

Roch, J.-F.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

Sakoda, K.

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63(12), 125107 (2001).
[CrossRef]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Scherer, A.

Schudel, B. R.

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Segal, E.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Sentenac, A.

Serpengüzel, A.

Shankaran, D.

D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
[CrossRef]

Shapira, O.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Sharon, M.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Shtenberg, G.

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Slusher, R.

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

Solgaard, O.

Soljacic, M.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Soria, S.

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Talneau, A.

Threm, D.

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
[CrossRef] [PubMed]

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
[CrossRef]

Treussart, F.

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Vernooy, D.

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

Villeneuve, P. R.

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton.1(3–4), 267–291 (2012).

Wang, R.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

Wang, X.-H.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

Watkin, K. L.

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express16(2), 1020–1028 (2008).
[CrossRef] [PubMed]

Xu, Y.

Yang, G.-Z.

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

Yang, L.

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton.1(3–4), 267–291 (2012).

Yanik, A. A.

Yariv, A.

Yu, Z.

Zhang, J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Zhen, B.

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Zhu, W.

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

Zou, Y.

W.-C. Lai, S. Chakravarty, Y. Zou, and R. T. Chen, “Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing,” Opt. Lett.37(7), 1208–1210 (2012).
[CrossRef] [PubMed]

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem.377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

G. Shtenberg, N. Massad-Ivanir, O. Moscovitz, S. Engin, M. Sharon, L. Fruk, and E. Segal, “Picking up the pieces: a generic porous Si biosensor for probing the proteolytic products of enzymes,” Anal. Chem.85(3), 1951–1956 (2013).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: A review,” Anal. Chim. Acta620(1), 8–26 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

S. McCall, A. Levi, R. Slusher, S. Pearton, and R. Logan, “Whispering‐gallery mode microdisk lasers,” Appl. Phys. Lett.60(3), 289–291 (1992).
[CrossRef]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009).
[CrossRef]

Biosens. Bioelectron. (1)

S. Chakravarty, Y. Zou, W.-C. Lai, and R. T. Chen, “Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon,” Biosens. Bioelectron.38(1), 170–176 (2012).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

V. Liu and S. Fan, “S4: A free electromagnetic solver for layered periodic structures,” Comput. Phys. Commun.183(10), 2233–2244 (2012).
[CrossRef]

Eur. Phys. J. D (1)

F. Treussart, V. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence for intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D1(3), 235 (1998).

J. Appl. Phys. (1)

R. Wang, X.-H. Wang, B.-Y. Gu, and G.-Z. Yang, “Effects of shapes and orientations of scatterers and lattice symmetries on the photonic band gap in two-dimensional photonic crystals,” J. Appl. Phys.90(9), 4307 (2001).
[CrossRef]

J. Biophotonics (1)

D. Threm, Y. Nazirizadeh, and M. Gerken, “Photonic crystal biosensors towards on-chip integration,” J. Biophotonics5(8–9), 601–616 (2012).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

B. R. Schudel, C. J. Choi, B. T. Cunningham, and P. J. Kenis, “Microfluidic chip for combinatorial mixing and screening of assays,” Lab Chip9(12), 1676–1680 (2009).
[CrossRef] [PubMed]

Mater. Sci. Eng. B (1)

V. Lefèvre-Seguin and S. Haroche, “Towards cavity-QED experiments with silica microspheres,” Mater. Sci. Eng. B48(1), 53–58 (1997).
[CrossRef]

Nano Lett. (3)

S. Lin, W. Zhu, Y. Jin, and K. B. Crozier, “Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity,” Nano Lett.13(2), 559–563 (2013).
[CrossRef] [PubMed]

E. Jaquay, L. J. Martínez, C. A. Mejia, and M. L. Povinelli, “Light-assisted, templated self-assembly using a photonic-crystal slab,” Nano Lett.13(5), 2290–2294 (2013).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Nanophoton. (1)

F. Vollmer and L. Yang, “Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophoton.1(3–4), 267–291 (2012).

Nat. Biotechnol. (1)

P. S. Cremer, “Label-free detection becomes crystal clear,” Nat. Biotechnol.22(2), 172–173 (2004).
[CrossRef] [PubMed]

Nature (1)

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (5)

Phys. Rev. A (2)

D. Vernooy, A. Furusawa, N. P. Georgiades, V. Ilchenko, and H. Kimble, “Cavity QED with high-Q whispering gallery modes,” Phys. Rev. A57(4), 2293–2296 (1998).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Phys. Rev. B (3)

N.-V.-Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B79(4), 041101 (2009).
[CrossRef]

S. Fan and J. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65(23), 235112 (2002).
[CrossRef]

T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagonal photonic crystal slab,” Phys. Rev. B63(12), 125107 (2001).
[CrossRef]

Phys. Rev. B Condens. Matter (2)

P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability, and coupling efficiency,” Phys. Rev. B Condens. Matter54(11), 7837–7842 (1996).
[CrossRef] [PubMed]

K. Sakoda, “Symmetry, degeneracy, and uncoupled modes in two-dimensional photonic lattices,” Phys. Rev. B Condens. Matter52(11), 7982–7986 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

J. Lee, B. Zhen, S.-L. Chua, W. Qiu, J. D. Joannopoulos, M. Soljačić, and O. Shapira, “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett.109(6), 067401 (2012).
[CrossRef] [PubMed]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Measurement of photonic band structure in a two-dimensional periodic dielectric array,” Phys. Rev. Lett.68(13), 2023–2026 (1992).
[CrossRef] [PubMed]

Proc. SPIE (1)

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE6447, 64470P (2007).
[CrossRef]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (3)

L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, “Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library,” Sens. Actuators B Chem.132(2), 418–425 (2008).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Actuators B Chem.99(1), 6–13 (2004).
[CrossRef]

D. Shankaran, K. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B Chem.121(1), 158–177 (2007).
[CrossRef]

Sensors (1)

S. Soria, S. Berneschi, M. Brenci, F. Cosi, G. Nunzi Conti, S. Pelli, and G. C. Righini, “Optical microspherical resonators for biomedical sensing,” Sensors11(1), 785–805 (2011).
[CrossRef] [PubMed]

Other (2)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press, Inc., 2006).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic crystals: molding the flow of light (Princeton university press, 2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online). (a) Geometry of HPCS reduced unit cell (bounded by the blue dashed line), and (b) geometry of CPCS reduced unit cell (bounded by the green solid line), with lattice constant a’ and the inter-hole distance a’/√2. (c) Schematic description of CPCS (solid green line), and HPCS (dashed blue line) band-folding starting from a dielectric substrate guided mode (dotted red line) into HPCS GR at [kx,ky] = [π/a, π/a] and into CPCS GR at [kx,ky] = [π/2a, π/2a]. In panel (c), we have set inter-hole distance of HPCS and CPCS to be the same, resulting in a ratio of a’/a = √2 for the lattice constants of CPCS and HPCS. The nano-hole radii are r1 = rr/2 and r2 = r + Δr/2 for small Δr.

Fig. 2
Fig. 2

(Color online) The theoretically predicted CPCS Q values for TE- and TM- like modes as a function of (a) increasing nano-hole radius difference in the range of Δr = 5nm to 200nm (fixed r1 = 150nm, r2 = 155nm to 350nm) and, (b) simultaneously increasing both r1 and r2 nano-hole radii, keeping the radius difference fixed at Δr = 50nm. The corresponding HPCS structures of r = 155nm to 350nm and r = 155nm to 250nm are plotted in (a) and (b), respectively. The lattice constants aHPCS = aCPCS = 1018nm.

Fig. 3
Fig. 3

(Color online) The theoretically predicted S values as a function of (a) increasing nano-hole radius difference in the range of Δr = 5nm to 200nm (fixed r1 = 150nm, r2 = 155nm to 350nm) and, (b) increasing nano-hole radii, where the radius difference is fixed at Δr = 50nm while increasing r1 and r2 simultaneously. (see schematic in Fig. 1). The corresponding HPCS structures of r = 155nm to 350nm and r = 155nm to 250nm are plotted in (a) and (b) respectively. The lattice constants aHPCS = aCPCS = 1018nm. For all structures, the lattice constants and size of unit cells are the same, but with slightly different peak resonance wavelengths that deviate from around 1550nm for TE-like modes and 1460nm for TM-like.

Fig. 4
Fig. 4

(Color online) Comparison of the simulated energy distribution patterns, ε|(E)|2 at xy-plane (z = −124nm), and xz-plane (y = 0nm). (a-d) CPCS TM- and TE- like modes for infinite liquid/258nm SiNx/5nm Al2O3/52nm SiNx/infinite air, (e-h) CPCS TM- and TE- for infinite liquid/258nm SiNx/infinite SiO2 and (i-l) HPCS TM- and TE- like modes for infinite liquid/258nm SiNx/5nm Al2O3/52nm SiNx/infinite air. Note that the layered structure depicted in the second column (b, f and j) is identical across each row. The simulated refractive index were n(liquid) = 1.43, n(SiNx) = 2.02, n(Al2O3) = 1.65, and n(SiO2) = 1.47 with exciting wavelength at mode resonance, λTE ~1550nm and λTM ~1460nm. The top SiNx layer was patterned with 150nm and 200nm nano-hole radii.

Fig. 5
Fig. 5

(Color online) Scanning Electron Micrograph (SEM) image of a checkerboard photonic crystal slab top view [CNI Quanta 250FEG ESEM, beam voltage 10kV] overlaid by a drawing of a unit cell. The lattice constant aCPCS = 1018nm, the nano-holes radii are r1 = 150nm, r2 = 200nm respectively with Δr = 50nm. Scale bar is 1μm.

Fig. 6
Fig. 6

(Color online) Schematics of the liquid/SiNx/air suspended membrane design. (a) 3D view of the layers structure and window after KOH wet etch removal of the Si substrate, (b) layer structure cross-section and, (c) top view demonstrating the fabricated CPCS nano-hole array.

Fig. 7
Fig. 7

(Color online) Experimental setup used for characterizing the CPCS and HPCS devices.

Fig. 8
Fig. 8

(Color online) (a) P-polarization band diagram with incident E-field polarization at 45°, and the corresponding CPCS transmission spectrum at normal incidence (red solid line). In the insets are the electric field energy profile ε|(E)|2 for the different simulated modes. “TE/TM”, “Bright/Dark” are labeled according to the mode at θ=0°. (b) Definition of Electric field polarization with respect to CPCS lattice. The xy-planes are at z = 0 and xz-planes are at y = 0.25a.

Fig. 9
Fig. 9

(Color online) Quality factor, Q analysis using normal incident cross-polarized light in transmission mode, comparing CPCS (r1 = 150nm, r2 = 200nm) vs. HPCS (r = 150nm) TE and TM like modes for liquid RI, n = 1.43 and layered structure of liquid, 248nm thick SiNx, 5nm thick Al2O3, 52nm thick SiNx and air. (a) CPCS TE-like experimental waveform, (b) HPCS TE-like experimental waveform, (c) CPCS TM-like experimental waveform and, (d) HPCS TM-like experimental waveform.

Fig. 10
Fig. 10

(Color online) Sensitivity evaluation of CPCS TM and TE like GR modes with same parameters as in Fig. 9. (a) Measured TM-like experimental spectral waveforms for 3 different RI’s (b) TE-like experimental spectral waveforms for 3 different RI’s (c) Fitted experimental TM- and TE-like sensitivity values and, (d) experimental TM- and TE-like quality factors.

Tables (1)

Tables Icon

Table 1 Comparison between experimental and theoretical sensitivity values

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ( ω ) d 3 rε( r ) [ E ext ( ω,r ) ] * E k,m ( r ) ,
S= Δ λ 0 Δn = λ 0 liquid d 3 rn( r ) | E k,m ( r ) | 2 d 3 r n 2 ( r ) | E k,m ( r ) | 2

Metrics