Abstract

Mechanism and sensing applications of antiresonant reflecting guidance in an alcohol-filled simplified hollow-core (SHC) photonic crystal fiber (PCF) are demonstrated. By filling one air hole in the air cladding of the PCF with alcohol, anti-resonant reflecting guidance of light can be achieved and energy leakage of the core modes can be induced at resonant wavelengths of the Fabry-Pérot (F-P) resonator formed by the alcohol-filled layer combined with the silica cladding in the cross-section of the PCF. The proposed structure exhibits periodic lossy dips in the transmission spectrum, of which the visibilities are sensitive to the refractive index of surrounding medium due to the reflectivity variation of the F-P resonator. Water level sensing is experimentally realized with this principle and the lossy dip exhibits a linear decrease against water level with a sensitivity of 1.1 dB/mm. The sensor is also sensitive to environmental temperature and a temperature sensitivity of −0.48 nm/°C is obtained between room temperature and 60 °C.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk

Ran Gao, Danfeng Lu, Jin Cheng, and Zhi-mei Qi
Opt. Express 25(15) 18081-18091 (2017)

Simultaneous measurement of refractive index and flow rate using graphene-coated optofluidic anti-resonant reflecting guidance

Ran Gao, Danfeng Lu, Jin Cheng, and Zhi-mei Qi
Opt. Express 25(23) 28731-28742 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
    [Crossref] [PubMed]
  2. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
    [Crossref]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref] [PubMed]
  4. S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669–18675 (2009).
    [Crossref]
  5. W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
    [Crossref]
  6. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31, 2489–2491 (2006).
    [Crossref] [PubMed]
  7. Y. Wang, D. N. Wang, C. R. Liao, T. Hu, J. Guo, and H. Wei, “Temperature-insensitive refractive index sensing by use of micro Fabry-Pérot cavity based on simplified hollow-core photonic crystal fiber,” Opt. Lett. 38, 269–271 (2013).
    [Crossref] [PubMed]
  8. Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. N. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16, 2784–2790 (2008).
    [Crossref] [PubMed]
  9. Z. Wu, Z. Wang, Y.-G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19, 17344–17349 (2011).
    [Crossref] [PubMed]
  10. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
    [Crossref] [PubMed]
  11. M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [Crossref]
  12. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
    [Crossref] [PubMed]
  13. A. M. Zheltikov, “Ray-optic analysis of the (bio)sensing ability of ring-cladding hollow waveguides,” Appl. Opt. 47(3), 474–479 (2008).
    [Crossref] [PubMed]
  14. B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(1), 19353–19360 (2010).
    [Crossref] [PubMed]
  15. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(1), 5858–5866 (2010).
    [Crossref]
  16. S. Liu, N. Liu, M. Hou, J. Guo, Z. Li, and P. Lu, “Direction-independent fiber inclinometer based on simplified hollow core photonic crystal fiber,” Opt. Lett. 38, 449–451 (2013).
    [Crossref] [PubMed]
  17. Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18, 18056–18060 (2010).
    [Crossref] [PubMed]
  18. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  19. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
    [Crossref] [PubMed]
  20. F. Gérôme, R. Jamier, J. L. Auguste, G. Humbert, and J. M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010).
    [Crossref] [PubMed]
  21. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [Crossref]
  23. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
    [Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (1)

2010 (5)

2009 (1)

2008 (3)

2007 (2)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

2003 (1)

2002 (2)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

1986 (1)

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Abeeluck, A. K.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Amezcua-Correa, R.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Araújo, F. M.

Aref, S. H.

Argyros, A.

Auguste, J. L.

Beloglasov, V. I.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Benabid, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Bethge, J.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Blondy, J. M.

Bock, M.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Caldas, P.

Carvalho, J. P.

Chang, H. C.

Chen, H.-Z.

Corwin, K. L.

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

de Sterke, C. M.

Duduay, M. A.

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Dunn, S. C.

Eggleton, B. J.

Faheem, M.

Farahi, F.

Farr, L.

Ferreira, L. A.

Fischer, D.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Frazão, O.

Gérôme, F.

Guo, J.

Han, T.

Headley, C.

Ho, H. L.

Hou, M.

Hu, T.

Humbert, G.

Iliew, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Jamier, R.

Jin, W.

Jones, J. D. C.

Ju, J.

Knabe, K.

Knight, J. C.

Koch, T. L.

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kokubun, Y.

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Kumar, K.

Lai, C.-H.

Latifi, H.

Li, L.

Li, S.

Li, Z.

Liao, C. R.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Liou, J.-H.

Litchinitser, N. M.

Liu, D.

Liu, N.

Liu, S.

Liu, T.-A.

Liu, Y.-G.

Lu, J.-Y.

Lu, P.

MacPherson, W. N.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Mason, M. W.

McPhedran, R. C.

Naweed, A.

Peng, J.-L.

Pfeiffer, L.

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

Pla, J.

Ravi, V. V.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rigg, E. J.

Roberts, P. J.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Russell, P. St. J.

Russell, P.St.J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Santos, J. L.

Skibina, J. S.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Steinmeyer, G.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Sun, C.-K.

Thapa, R.

Tomlinson, A.

Usner, B.

Wang, D. N.

Wang, Y.

Wang, Z.

Weaver, O. L.

Wedell, R.

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Wei, H.

White, T. P.

Williams, D. P.

Wu, Z.

Xia, L.

Xiao, L.

Xie, Z.

Xuan, H.

You, B.

Yu, C.-P.

Zheltikov, A. M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. A. Duduay, Y. Kokubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, and G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2, 679–683 (2008).
[Crossref]

Opt. Express (11)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, and A. Tomlinson, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

S. H. Aref, R. Amezcua-Correa, J. P. Carvalho, O. Frazão, P. Caldas, J. L. Santos, F. M. Araújo, H. Latifi, F. Farahi, L. A. Ferreira, and J. C. Knight, “Modal interferometer based on hollow-core photonic crystal fiber for strain and temperature measurement,” Opt. Express 17, 18669–18675 (2009).
[Crossref]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243–1251 (2003).
[Crossref] [PubMed]

Y. Wang, W. Jin, J. Ju, H. Xuan, H. L. Ho, L. Xiao, and D. N. Wang, “Long period gratings in air-core photonic bandgap fibers,” Opt. Express 16, 2784–2790 (2008).
[Crossref] [PubMed]

Z. Wu, Z. Wang, Y.-G. Liu, T. Han, S. Li, and H. Wei, “Mechanism and characteristics of long period fiber gratings in simplified hollow-core photonic crystal fibers,” Opt. Express 19, 17344–17349 (2011).
[Crossref] [PubMed]

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010).
[Crossref] [PubMed]

B. You, J.-Y. Lu, J.-H. Liou, C.-P. Yu, H.-Z. Chen, T.-A. Liu, and J.-L. Peng, “Subwavelength film sensing based on terahertz anti-resonant reflecting hollow waveguides,” Opt. Express 18(1), 19353–19360 (2010).
[Crossref] [PubMed]

B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, and J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(1), 5858–5866 (2010).
[Crossref]

Y. Wang, C. R. Liao, and D. N. Wang, “Femtosecond laser-assisted selective infiltration of microstructured optical fibers,” Opt. Express 18, 18056–18060 (2010).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15, 7713–7719 (2007).
[Crossref] [PubMed]

L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20, 11109–11120 (2012).
[Crossref] [PubMed]

Opt. Lett. (5)

Science (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P.St.J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic bandgap guidance of light in air,” Science 285, 1537–1539 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross section view of the SHC PCF. (b) The SHC PCF sealed with glue at the end face. (c) One air hole in the air cladding is selectively opened with FS laser. (d) Schematic illustration of the proposed structure.
Fig. 2
Fig. 2 (a) The optical path of the interference beams at the alcohol-filled area and the outer cladding. (b) The transmission spectra of the devices with different filling lengths in 1 air hole of the air cladding.
Fig. 3
Fig. 3 (a) Schematic illustration of the alcohol infiltration from the cross section view of the fiber (blue color represents alcohol). (b) The transmission spectra of the devices with different number of alcohol-filled air holes.
Fig. 4
Fig. 4 (a) Water level response of the structure spectrum. (b) Dip loss variation against water level.
Fig. 5
Fig. 5 (a) Spectrum blueshift with increasing of temperature. (b) Temperature response of the SHC PCF with filling length of 2 cm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 ( d 1 n 1 2 n 0 2 + d 2 n 2 2 n 0 2 ) m ,
A r = [ r + t t r exp ( i δ ) 1 r 2 exp ( i δ ) ] A i ,
t t = 1 r 2 .
I r = A r A r * .
I r = r 2 + r 2 r 4 + ( 1 r 2 ) 2 r 2 2 r r 3 ( 1 r 2 ) cos δ 2 r [ r r 2 ( 1 r 2 ) r ] cos δ 1 + r 4 2 r 2 cos δ I i ,
T resonant = I resonant r = ( 1 r r ) 2 ( r + r ) 2 1 + r 4 2 r 2 I resonant i ,
λ m T = 2 d 1 n 1 m n 1 2 n 0 2 α

Metrics