Abstract

In this work an optical fiber tunable filter based on lossy guided-mode resonances (LGMR) is proposed. It consists of a multilayer structure deposited onto the surface of a plastic cladding removed multimode fiber. The first layer is used to generate the LGMR and to work as the first electrode as well; the second one to tune the filter and the outer layer forms the other electrode. The fabricated filter has demonstrated a good sensitivity to the applied voltage showing a change of the LGMR wavelength of 0.4 nm/V. Among other applications, this filter is intended to be used as electro-optic wavelength filter or modulator.

© 2013 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design rules for lossy mode resonance based sensors

Ignacio Del Villar, Miguel Hernaez, Carlos R. Zamarreño, Pedro Sánchez, Carlos Fernández-Valdivielso, Francisco J. Arregui, and Ignacio R. Matias
Appl. Opt. 51(19) 4298-4307 (2012)

Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating

Chun-Ta Wang, Hao-Hsiang Hou, Ping-Chien Chang, Cheng-Chang Li, Hung-Chang Jau, Yung-Jr Hung, and Tsung-Hsien Lin
Opt. Express 24(20) 22892-22898 (2016)

Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings

Miguel Hernáez, Ignacio Del Villar, Carlos R. Zamarreño, Francisco J. Arregui, and Ignacio R. Matias
Appl. Opt. 49(20) 3980-3985 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature sensitive long period fiber gratings for wideband tunable filters,” in Optical Fiber Communication Conference, San Diego, California, Feb. 21–26, 1999.
    [Crossref]
  2. D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
    [Crossref]
  3. S. Hyun Nam, J. Lee, and S. Yin, “Control of resonant peak depths of tunable long-period fiber gratings using overcoupling,” Opt. Commun. 284(4), 961–964 (2011).
    [Crossref]
  4. Q. Chen, J. Lee, M. Lin, Y. Wang, S. S. Yin, Q. Zhang, and K. M. Reichard, “Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model,” J. Lightwave Technol. 24(7), 2954–2962 (2006).
    [Crossref]
  5. L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
    [Crossref]
  6. F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process,” Opt. Lett. 26(3), 131–133 (2001).
    [Crossref] [PubMed]
  7. F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
    [Crossref]
  8. M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEEE Proc. J.140(4), 247–251 (1993).
    [Crossref]
  9. I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).
  10. I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, “Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters,” Opt. Express 11(5), 430–436 (2003).
    [Crossref] [PubMed]
  11. C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
    [Crossref]
  12. M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
    [Crossref] [PubMed]
  13. I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
    [Crossref]
  14. I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
    [Crossref]
  15. R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
    [Crossref]
  16. C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
    [Crossref]
  17. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
    [Crossref]
  18. J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
    [Crossref]
  19. Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
    [Crossref]
  20. C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
    [Crossref]
  21. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
    [Crossref]
  22. C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
    [Crossref]
  23. R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
    [Crossref]
  24. D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
    [Crossref]
  25. A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
    [Crossref]
  26. H. Zhen, G. Li, K. Zhou, and X. Liu, “Tunable Fabry-Perot interferometer from ferroelectric polymer based on surface energy modification,” Opt. Express 18(15), 15784–15789 (2010).
    [Crossref] [PubMed]
  27. J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
    [Crossref]
  28. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
    [Crossref]
  29. S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
    [Crossref] [PubMed]

2012 (3)

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
[Crossref] [PubMed]

2011 (3)

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

S. Hyun Nam, J. Lee, and S. Yin, “Control of resonant peak depths of tunable long-period fiber gratings using overcoupling,” Opt. Commun. 284(4), 961–964 (2011).
[Crossref]

2010 (9)

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

H. Zhen, G. Li, K. Zhou, and X. Liu, “Tunable Fabry-Perot interferometer from ferroelectric polymer based on surface energy modification,” Opt. Express 18(15), 15784–15789 (2010).
[Crossref] [PubMed]

2007 (1)

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
[Crossref]

2006 (2)

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Q. Chen, J. Lee, M. Lin, Y. Wang, S. S. Yin, Q. Zhang, and K. M. Reichard, “Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model,” J. Lightwave Technol. 24(7), 2954–2962 (2006).
[Crossref]

2004 (2)

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

2003 (1)

2002 (1)

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

2001 (1)

1997 (1)

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

1994 (1)

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

1993 (1)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[Crossref]

Abatte, G.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Arregui, F. J.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
[Crossref] [PubMed]

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
[Crossref]

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, “Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters,” Opt. Express 11(5), 430–436 (2003).
[Crossref] [PubMed]

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process,” Opt. Lett. 26(3), 131–133 (2001).
[Crossref] [PubMed]

Bauer, F.

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Chen, Q.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Q. Chen, J. Lee, M. Lin, Y. Wang, S. S. Yin, Q. Zhang, and K. M. Reichard, “Investigation of tuning characteristics of electrically tunable long-period gratings with a precise four-layer model,” J. Lightwave Technol. 24(7), 2954–2962 (2006).
[Crossref]

Choi, S. W.

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

Claus, R. O.

Cooper, K. L.

Coppola, G.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Corres, J. M.

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
[Crossref]

Costantini, D.

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

Del Villar, I.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
[Crossref] [PubMed]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, “Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters,” Opt. Express 11(5), 430–436 (2003).
[Crossref] [PubMed]

Fong, H.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Fu, Q.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Garcia, Y. R.

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

Glück, A.

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

Grzegorzewski, J.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEEE Proc. J.140(4), 247–251 (1993).
[Crossref]

Halder, W.

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

Hernaez, M.

S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
[Crossref] [PubMed]

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

Hernáez, M.

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

Huang, M.

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Hyun Nam, S.

S. Hyun Nam, J. Lee, and S. Yin, “Control of resonant peak depths of tunable long-period fiber gratings using overcoupling,” Opt. Commun. 284(4), 961–964 (2011).
[Crossref]

Jeong, D. Y.

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Jo, S. M.

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

Jorgenson, R. C.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[Crossref]

Kavarnos, G. J.

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Kim, B. C.

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

Kim, J. R.

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

Lee, J.

Lee, J. E.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Lee, W. S.

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

Li, G.

Limberger, H. G.

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

Lin, M.

Lin, M. R.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Lindner, G.

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

Liu, X.

Lopez, S.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

López, S.

Marciniak, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEEE Proc. J.140(4), 247–251 (1993).
[Crossref]

Matias, I. R.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

S. López, I. del Villar, C. Ruiz Zamarreño, M. Hernaez, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on indium tin oxide coatings fabricated by sputtering,” Opt. Lett. 37(1), 28–30 (2012).
[Crossref] [PubMed]

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
[Crossref]

I. Del Villar, I. R. Matias, F. J. Arregui, and R. O. Claus, “Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters,” Opt. Express 11(5), 430–436 (2003).
[Crossref] [PubMed]

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Fabrication of microgratings on the ends of standard optical fibers by the electrostatic self-assembly monolayer process,” Opt. Lett. 26(3), 131–133 (2001).
[Crossref] [PubMed]

Muller, C. A. P.

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

Müller, H.

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

Otón, J. M.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Reichard, K. M.

Righini, G. C.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Ruiz Zamarreño, C.

Salathe, R. P.

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

Sanchez, P.

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Sireto, L.

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Su, R.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Szustakowski, M.

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEEE Proc. J.140(4), 247–251 (1993).
[Crossref]

Valdivielso, C. F.

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Vasiliev, S. A.

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

Wang, Y.

Wang, Y. K.

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Weindler, P.

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

Yee, S. S.

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[Crossref]

Yin, S.

S. Hyun Nam, J. Lee, and S. Yin, “Control of resonant peak depths of tunable long-period fiber gratings using overcoupling,” Opt. Commun. 284(4), 961–964 (2011).
[Crossref]

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Yin, S. S.

Zamarreño, C. R.

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Lossy mode resonance generation with indium tin oxide coated optical fibers for sensing applications,” J. Lightwave Technol. 28(1), 111–117 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

M. Hernáez, I. Del Villar, C. R. Zamarreño, F. J. Arregui, and I. R. Matias, “Optical fiber refractometers based on lossy mode resonances supported by TiO2 coatings,” Appl. Opt. 49(20), 3980–3985 (2010).
[Crossref] [PubMed]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

I. Del Villar, C. R. Zamarreño, M. Hernaez, I. R. Matias, and F. J. Arregui, “Generation of lossy mode resonances with absorbing thin-films,” J. Lightwave Technol. 28, 3351–3357 (2010).

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

Zhang, L.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Zhang, Q.

Zhang, Q. M.

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

Zhen, H.

Zhong, G.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Zhou, K.

Zhu, L.

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Q. Chen, M. R. Lin, J. E. Lee, Q. M. Zhang, and S. Yin, “Nanocomposites with very large electro-optic effect and widely tunable refractive index,” Appl. Phys. Lett. 89(14), 141121 (2006).
[Crossref]

Electrochim. Acta (1)

J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, “Electrospun PVdF based fibrous polymer electrolytes for lithium ion polymer batteries,” Electrochim. Acta 50(1), 69–75 (2004).
[Crossref]

IEEE Sens. J. (3)

J. M. Corres, Y. R. Garcia, F. J. Arregui, and I. R. Matias, “Optical fiber humidity sensors using PVdF electrospun nanowebs,” IEEE Sens. J. 11(10), 2383–2387 (2011).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infra-red region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

C. R. Zamarreño, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “ITO coated optical fiber refractometers based on resonances in the infrared region,” IEEE Sens. J. 10(2), 365–366 (2010).
[Crossref]

J. Appl. Phys. (1)

D. Y. Jeong, Y. K. Wang, M. Huang, Q. M. Zhang, G. J. Kavarnos, and F. Bauer, “Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer,” J. Appl. Phys. 96(1), 316–319 (2004).
[Crossref]

J. Lightwave Technol. (3)

J. Mater. Res. (1)

R. Su, G. Zhong, Q. Fu, L. Zhang, H. Fong, and L. Zhu, “Polarity-induced ferroelectric crystalline phase in electrospun fibers of poly(vinylidene fluoride)/polyacrylonitrile blends,” J. Mater. Res. 27(10), 1389–1398 (2012).
[Crossref]

J. Mod. Opt. (1)

F. Yang and J. R. Sambles, “Determination of the optical permittivity and thickness of absorbing films using long range modes,” J. Mod. Opt. 44(6), 1155–1163 (1997).
[Crossref]

J. Opt. (1)

I. Del Villar, C. R. Zamarreño, P. Sanchez, M. Hernaez, C. F. Valdivielso, F. J. Arregui, and I. R. Matias, “Generation of lossy mode resonances by deposition of high-refractive-index coatings on uncladded multimode optical fibers,” J. Opt. 12(9), 095503 (2010).
[Crossref]

Opt. Commun. (1)

S. Hyun Nam, J. Lee, and S. Yin, “Control of resonant peak depths of tunable long-period fiber gratings using overcoupling,” Opt. Commun. 284(4), 961–964 (2011).
[Crossref]

Opt. Eng. (1)

L. Sireto, G. Coppola, G. Abatte, G. C. Righini, and J. M. Otón, “Electro-optical switch and continuously tunable filter based on a Bragg grating in a planar waveguide with liquid crystal overlayer,” Opt. Eng. 41(11), 2890–2893 (2002).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Sens. Actuators B (6)

R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12(3), 213–220 (1993).
[Crossref]

C. R. Zamarreño, S. Lopez, M. Hernaez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Resonance-based refractometric response of cladding-removed optical fibers with sputtered indium tin oxide coatings,” Sens. Actuators B 175, 106–110 (2012).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings,” Sens. Actuators B 155(1), 290–297 (2011).
[Crossref]

J. M. Corres, F. J. Arregui, and I. R. Matias, “Sensitivity optimization of tapered optical fiber humidity sensors by means of tuning the thickness of nanostructured sensitive coatings,” Sens. Actuators B 122(2), 442–449 (2007).
[Crossref]

A. Glück, W. Halder, G. Lindner, H. Müller, and P. Weindler, “PVDF- excited resonance sensors for gas flow and humidity measurements,” Sens. Actuators B 19(1–3), 554–557 (1994).
[Crossref]

C. R. Zamarreño, M. Hernáez, I. Del Villar, I. R. Matias, and F. J. Arregui, “Tunable humidity sensor based on ITO-coated optical fiber,” Sens. Actuators B 146(1), 414–417 (2010).
[Crossref]

Sens. Lett. (1)

C. R. Zamarreño, I. Del Villar, M. Hernáez, I. R. Matias, and F. J. Arregui, “Optical fiber refractometers with tunable sensitivity based on ITO coatings,” Sens. Lett. 8(5), 744–746 (2010).
[Crossref]

Other (3)

A. A. Abramov, A. Hale, R. S. Windeler, and T. A. Strasser, “Temperature sensitive long period fiber gratings for wideband tunable filters,” in Optical Fiber Communication Conference, San Diego, California, Feb. 21–26, 1999.
[Crossref]

D. Costantini, H. G. Limberger, R. P. Salathe, C. A. P. Muller, and S. A. Vasiliev, “Tunable loss filter based on metal coated long period grating,” in Proc. ECOC’98, Madrid, Spain, Sept. 1998, pp. 391–392.
[Crossref]

M. Marciniak, J. Grzegorzewski, and M. Szustakowski, “Analysis of lossy mode cut-off conditions in planar waveguides with semiconductor guiding layer,” IEEE Proc. J.140(4), 247–251 (1993).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Scheme of the multilayer structure of the EO tunable wavelength filter.

Fig. 2
Fig. 2

Detail of the device.

Fig. 3
Fig. 3

SEM image of the cross section of the fiber a) ITO coating b) PVdF nanoweb coating by electro-spinning technique and c) surface view of the PVdF nanoweb coating.

Fig. 4
Fig. 4

Experimental setup.

Fig. 5
Fig. 5

Transmittance spectra of the device before and after poling.

Fig. 6
Fig. 6

LGMR peak shift produced by external voltage.

Fig. 7
Fig. 7

Some cycles of both polarity voltages, Fig. on the bottom shows the voltage applied to the device and Fig. on top plots the spectral response of the device under this voltage.

Fig. 8
Fig. 8

Response of the device to voltage variations (corresponding to the first resonance). Shadowed the range of variation when subjected to 50 voltage cycles.

Fig. 9
Fig. 9

Response time of the LGMR tunable filter.

Metrics