Abstract

A Raman spectrometer technique is described that aims at suppressing the fluorescence background typical of Raman spectra. The sample is excited with a high power (65W), short (300ps) laser pulse and the time position of each of the Raman scattered photons with respect to the excitation is measured with a CMOS SPAD detector and an accurate time-to-digital converter at each spectral point. It is shown by means of measurements performed on an olive oil sample that the fluorescence background can be greatly suppressed if the sample response is recorded only for photons coinciding with the laser pulse. A further correction in the residual fluorescence baseline can be achieved using the measured fluorescence tails at each of the spectral points.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
    [CrossRef]
  2. N. L. Jestel, “Process Raman spectroscopy,” in Process Analytical Technology Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries (Blackwell, 2005), Chap. 5.
  3. R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
    [CrossRef]
  4. O. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).
  5. P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
    [CrossRef]
  6. K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
    [CrossRef]
  7. R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
    [CrossRef]
  8. D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
    [CrossRef]
  9. E. V. Efremov, J. B. Buijs, C. Gooijer, and F. Ariese, “Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera,” Appl. Spectrosc.61(6), 571–578 (2007).
    [CrossRef]
  10. D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
    [CrossRef]
  11. I. Nissinen, J. Nissinen, A.-K. Länsman, L. Hallman, A. Kilpelä, J. Kostamovaara, M. Kögler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single-photon avalanche diode detector for Raman spectroscopy,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2011), pp. 375–378.
    [CrossRef]
  12. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8 700ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration,” in Proceedings of IEEE Conference on Solid-State Circuits (ISSCC) (Institute of Electrical and Electronics Engineers, New York 2013), pp. 110–111.
  13. Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).
  14. I. Nissinen, A.-K. Lansman, J. Nissinen, J. Holma, and J. Kostamovaara, “2×(4×)128 time-gated CMOS single photon avalanche diode line detector with 100 ps resolution for Raman spectroscopy,” in Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (Institute of Electrical and Electronics Engineers, 2013), pp. 291–294.
  15. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
    [CrossRef]
  16. L. Pancheri and D. Stoppa, ”Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2007), pp. 362–365.
    [CrossRef]
  17. D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
    [CrossRef]
  18. P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
    [CrossRef]
  19. D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2012), pp. 230–233.
    [CrossRef]
  20. M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
    [CrossRef]

2014

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).

2012

R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
[CrossRef]

2011

P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
[CrossRef]

2010

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

2009

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

2008

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
[CrossRef]

2007

2006

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

2004

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

2003

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

2001

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

2000

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

1999

O. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).

1974

R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
[CrossRef]

Ahuja, R. C.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

Ariese, F.

Besse, P. A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Blacksberg, J.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).

Buijs, J. B.

Callender, A. F.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Charbon, E.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
[CrossRef]

Dasari, R. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Efremov, E. V.

Entwistle, M.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Feld, M. S.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Ferraro, J.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Fitzmaurice, M.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Furrer, B.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Gani, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Gisin, N.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Golcuk, K.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Gonzo, L.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

Gooijer, C.

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Hopkins, R.

R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
[CrossRef]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Itzler, M. A.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Jeanmaire, D. L.

R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
[CrossRef]

Jiang, X.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Keränen, P.

P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
[CrossRef]

Khalil, O.

O. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).

Kohn, D. H.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Koo, T.-W.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Kostamovaara, J.

P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
[CrossRef]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Kudriavtsev, A.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

Kwok, W. M.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Ma, C.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Määttä, K.

P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
[CrossRef]

Mandair, G. S.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Manoharan, R.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Martyshkin, D. V.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

Maruyama, Y.

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).

Matousek, P.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Mirov, S. B.

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

Morris, M. D.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Mosconi, D.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

Motz, J. T.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Owens, M.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Pancheri, L.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

Parker, A. W.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Patel, K.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Pelfrey, S. H.

R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
[CrossRef]

Phillips, D.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Popovic, R. S.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Rangwala, S.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Ribordy, G.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Rochas, A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

Sahar, N.

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Schwartz, D. E.

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
[CrossRef]

Senko, T.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Shand, N. C.

R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
[CrossRef]

Shepard, K. L.

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
[CrossRef]

Shriver, D. F.

R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
[CrossRef]

Slomkowski, K.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Stoppa, D.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

Toner, W. T.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Tower, J.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Towrie, M.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Van Duyne, R. P.

R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
[CrossRef]

Zalud, P. F.

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Anal. Chem.

R. P. Van Duyne, D. L. Jeanmaire, and D. F. Shriver, “Mode-locked laser Raman spectroscopy-a new technique for the rejection of interfering background luminescence signals,” Anal. Chem.46(2), 213–222 (1974).
[CrossRef]

Analyst

R. Hopkins, S. H. Pelfrey, and N. C. Shand, “Short-wave infrared excited spatially offset Raman spectroscopy (SORS) for through-barrier detection,” Analyst137(19), 4408–4410 (2012).
[CrossRef]

Appl. Spectrosc.

Biochim. Biophys. Acta

K. Golcuk, G. S. Mandair, A. F. Callender, N. Sahar, D. H. Kohn, and M. D. Morris, “Is photobleaching necessary for Raman imaging of bone tissue using a green laser?” Biochim. Biophys. Acta1758(7), 868–873 (2006).
[CrossRef]

Clin. Chem.

O. Khalil, “Spectroscopic and clinical aspects of noninvasive glucose measurements,” Clin. Chem.45(2), 165–177 (1999).

IEEE J. Solid State Circuits

D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid State Circuits43(11), 2546–2557 (2008).
[CrossRef]

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024 x 8, 700-ps time-gated SPAD line sensor for planetary surface exploration with laser Raman spectroscopy and LIBS,” IEEE J. Solid State Circuits49(1), 1–11 (2014).

IEEE Sens. J.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J.9(9), 1084–1090 (2009).
[CrossRef]

IEEE Trans. Instrum. Meas.

P. Keränen, K. Määttä, and J. Kostamovaara, “A wide range time-to-digital converter with 1ps single-shot precision,” IEEE Trans. Instrum. Meas.60(9), 3162–3172 (2011).
[CrossRef]

J. Raman Spectrosc.

P. Matousek, M. Towrie, C. Ma, W. M. Kwok, D. Phillips, W. T. Toner, and A. W. Parker, “Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate,” J. Raman Spectrosc.32(12), 983–988 (2001).
[CrossRef]

Phys. Med. Biol.

E. B. Hanlon, R. Manoharan, T.-W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000).
[CrossRef]

Proc. SPIE

M. A. Itzler, M. Entwistle, M. Owens, K. Patel, X. Jiang, K. Slomkowski, S. Rangwala, P. F. Zalud, T. Senko, J. Tower, and J. Ferraro, “Design and performance of single photon APD focal plane arrays for 3-D LADAR imaging,” Proc. SPIE7780, 77801M (2010).
[CrossRef]

Rev. Sci. Instrum.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum.74(7), 3263–3270 (2003).
[CrossRef]

D. V. Martyshkin, R. C. Ahuja, A. Kudriavtsev, and S. B. Mirov, “Effective suppression of fluorescence light in Raman measurements using ultrafast time gated charge coupled device camera,” Rev. Sci. Instrum.75(3), 630–635 (2004).
[CrossRef]

Other

I. Nissinen, A.-K. Lansman, J. Nissinen, J. Holma, and J. Kostamovaara, “2×(4×)128 time-gated CMOS single photon avalanche diode line detector with 100 ps resolution for Raman spectroscopy,” in Proceedings of the European Solid-State Circuits Conference (ESSCIRC) (Institute of Electrical and Electronics Engineers, 2013), pp. 291–294.

L. Pancheri and D. Stoppa, ”Low-noise CMOS single-photon avalanche diodes with 32 ns dead time,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2007), pp. 362–365.
[CrossRef]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2012), pp. 230–233.
[CrossRef]

N. L. Jestel, “Process Raman spectroscopy,” in Process Analytical Technology Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries (Blackwell, 2005), Chap. 5.

I. Nissinen, J. Nissinen, A.-K. Länsman, L. Hallman, A. Kilpelä, J. Kostamovaara, M. Kögler, M. Aikio, and J. Tenhunen, “A sub-ns time-gated CMOS single-photon avalanche diode detector for Raman spectroscopy,” in Proceedings of the European Solid-State Device Research Conference (ESSDRERC) (Institute of Electrical and Electronics Engineers, 2011), pp. 375–378.
[CrossRef]

Y. Maruyama, J. Blacksberg, and E. Charbon, “A 1024×8 700ps time-gated SPAD line sensor for laser Raman spectroscopy and LIBS in space and rover-based planetary exploration,” in Proceedings of IEEE Conference on Solid-State Circuits (ISSCC) (Institute of Electrical and Electronics Engineers, New York 2013), pp. 110–111.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Principle of time-gated Raman spectrum measurement.

Fig. 2
Fig. 2

Block diagram of the time-gated Raman spectrometer.

Fig. 3
Fig. 3

Cross-section of the SPAD.

Fig. 4
Fig. 4

Control circuit and timing diagram of the SPAD.

Fig. 5
Fig. 5

Raman and fluorescence spectra as functions of wavelength and time.

Fig. 6
Fig. 6

Number of photons (normalized) recorded as a function of the wavenumber and the time interval relative to the laser shot.

Fig. 7
Fig. 7

Raman spectra measured with time gate widths of 6ns (from 250ps to 6250ps), 1ns (from 250ps to 1250ps), 600ps (from 250ps to 850ps), 300ps (from 250ps to 550ps), 100ps (from 250ps to 350ps) and 50ps (from 250ps to 300ps). x-axis: wavenumbers [1/cm] and y-axis: relative intensity.

Fig. 8
Fig. 8

Curve 1 (blue): uncompensated Raman spectrum measured with a time gate window of 600ps; curve 2 (red): calculated fluorescence background based on the measured fluorescence counts within a window of 600ps located 3ns after the laser shot; curve 3 (green): fluorescence-compensated Raman spectrum, i.e. the differences between curves 1 and 2.

Fig. 9
Fig. 9

a) Intensity of Raman photons after fluorescence correction as a function of the wavenumber and the time interval relative to the laser shot; b) Raman spectrum calculated from Fig. 9(a) within a time gate of 250ps - 900ps.

Fig. 10
Fig. 10

Time distributions of the number of photons recorded at the position of the Raman peak (C1, red curve) and Raman free spectral points (C2 and C3, green and blue curves). The black curve C4 indicates the difference between the red and green curves.

Fig. 11
Fig. 11

Raman spectra recorded for an olive oil sample. Red curve C1 based on standard CW Raman measurement, green curve C2 based on time-gated CMOS SPAD measurement, and blue curve C3 based on FTIR measurement.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

SN R channel = N Raman_photons N Raman_photons + N Background + N fluor

Metrics