Abstract

We investigate L7 photonic crystal microcavities (PCMs) fabricated by epitaxial re-growth of GaAs pre-patterned substrates, containing InAs quantum dots. The resulting PCMs show hexagonal shaped nano-holes due to the development of preferential crystallographic facets during the re-growth step. Through a careful control of the fabrication processes, we demonstrate that the photonic modes are preserved throughout the process. The quality factor (Q) of the photonic modes in the re-grown PCMs strongly depends on the relative orientation between photonic lattice and crystallographic directions. The optical modes of the re-grown PCMs preserve the linear polarization and, for the most favorable orientation, a 36% of the Q measured in PCMs fabricated by the conventional procedure is observed, exhibiting values up to ~6000. The results aim to the future integration of site-controlled QDs with high-Q PCMs for quantum photonics and quantum integrated circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  2. M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).
  3. M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
    [CrossRef]
  4. I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
    [CrossRef]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
    [CrossRef]
  6. D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
    [CrossRef] [PubMed]
  7. S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
    [CrossRef]
  8. A. L. Grimsmo and S. Parkins, “Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime,” Phys. Rev. A87(3), 033814 (2013).
    [CrossRef]
  9. A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
    [CrossRef]
  10. A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
    [CrossRef] [PubMed]
  11. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
    [CrossRef]
  12. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
    [CrossRef] [PubMed]
  13. P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
    [CrossRef]
  14. P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).
  15. A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
    [CrossRef]
  16. A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
    [CrossRef]
  17. J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
    [CrossRef] [PubMed]
  18. J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
    [CrossRef]
  19. H. Watanabe and T. Baba, “High-efficiency photonic crystal microlaser integrated with a passive waveguide,” Opt. Express16(4), 2694–2698 (2008).
    [CrossRef] [PubMed]
  20. A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
    [CrossRef] [PubMed]
  21. D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
    [CrossRef]
  22. G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
    [CrossRef] [PubMed]
  23. E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
    [PubMed]
  24. M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
    [CrossRef]
  25. D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
    [CrossRef]
  26. S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
    [CrossRef]
  27. L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
    [CrossRef] [PubMed]
  28. J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
    [CrossRef] [PubMed]
  29. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
    [CrossRef] [PubMed]
  30. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
    [CrossRef]
  31. I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).
  32. A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
    [CrossRef]
  33. F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
    [CrossRef]
  34. X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993).
    [CrossRef]
  35. S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
    [CrossRef]
  36. H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
    [CrossRef]
  37. J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
    [CrossRef] [PubMed]
  38. A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
    [CrossRef]
  39. Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/
  40. J. M. Llorens, I. Prieto, L. E. Munioz-Camuniez, and P. A. Postigo, “Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method,” J. Opt. Soc. Am. B30(5), 1222–1231 (2013).
    [CrossRef]
  41. Z. Yuan, J. W. Haus, and K. Sakoda, “Eigenmode symmetry for simple cubic lattices and the transmission spectra,” Opt. Express3(1), 19–27 (1998).
    [PubMed]
  42. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
    [CrossRef]
  43. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).
  44. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]

2013 (2)

2012 (3)

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

2011 (5)

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

2010 (4)

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

2009 (5)

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (5)

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

2006 (2)

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).

2005 (5)

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

2004 (3)

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
[CrossRef]

1999 (1)

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

1998 (2)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Z. Yuan, J. W. Haus, and K. Sakoda, “Eigenmode symmetry for simple cubic lattices and the transmission spectra,” Opt. Express3(1), 19–27 (1998).
[PubMed]

1994 (1)

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

1993 (1)

X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993).
[CrossRef]

1989 (1)

F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
[CrossRef]

1985 (1)

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

Abelman, L.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Ahmadi, E. D.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Alén, B.

Alija, A. R.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

Alonso-González, P.

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Amann, M. C.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Anderson, D.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).

Arakawa, Y.

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Arita, M.

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

Atature, M.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Atkinson, P.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Atlasov, K. A.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

Awschalom, D. D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Azzini, S.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Baba, T.

Badolato, A.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Bajoni, D.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Bassett, K. P.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Bloch, J.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Bohm, G.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Borselli, M.

Boucaud, P.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Braive, R.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Braun, P. V.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Bremner, S. P.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Bretagnon, T.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Brimont, C.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Briones, F.

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
[CrossRef]

Burkard, G.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Calic, M.

Calleja, J. M.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Canet-Ferrer, J.

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

Checoury, X.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Childs, D. T. D.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Coleman, J. J.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

David, S.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Derry, P. L.

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

Dias, N. L.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

DiVincenzo, D. P.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Dotor, M. L.

Dreiser, J.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

Dunham, S. N.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Dwir, B.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

Englund, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Falt, S.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Faraon, A.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

Farrow, T.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Fattal, D.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Fernandez, G.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

Fernández-Martínez, I.

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Figiel, J. J.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Finley, J. J.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Fischer, A. J.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Fox, A. M.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

Fuster, D.

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Gallardo, E.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Galli, M.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Gallo, P.

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

García-Martín, A.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

Gayral, B.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Gerace, D.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Golmayo, D.

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

González, L.

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
[CrossRef]

González, Y.

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Grimsmo, A. L.

A. L. Grimsmo and S. Parkins, “Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime,” Phys. Rev. A87(3), 033814 (2013).
[CrossRef]

Groom, K. M.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Guillet, T.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Hauke, N.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Haus, J. W.

Heidemeyer, H.

H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

Herranz, J.

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Hogg, R. A.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Huffaker, D. L.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Ikeda, N.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Imamoglu, A.

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Inoue, K.

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Ishida, S.

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

Iwamoto, S.

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

Johnson, T. J.

Jones, G. A. C.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Jones, T. S.

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

Kako, S.

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

Kaniber, M.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Kano, H.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Kapon, E.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

Karlsson, K. F.

Khamas, S.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Khatiri, A.

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

Kim, G.-H.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Kim, H.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

Kim, S.-B.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Kim, S.-H.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Kim, S.-K.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Kitagawa, H.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

Koshiba, S.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Krysa, A. B.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Krzyzewski, T. J.

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

Kumagai, N.

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

Laucht, A.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Lee, Y. J.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Lee, Y.-H.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Lemaitre, A.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Li, Q.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Li, X.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Liang, B.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Lin, A.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Llorens, J. M.

Lodahl, P.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Loss, D.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Luxmoore, I. J.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Majumdar, A.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

Maragkou, M.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Margalit, S.

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

Martínez, L. J.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

Martínez-Pastor, J.

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

Martínez-Pastor, J. P.

Martín-Sánchez, J.

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

McConville, C. F.

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

Mexis, M.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Miyake, M.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Müller, C.

H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
[CrossRef]

Munioz-Camuniez, L. E.

J. M. Llorens, I. Prieto, L. E. Munioz-Camuniez, and P. A. Postigo, “Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method,” J. Opt. Soc. Am. B30(5), 1222–1231 (2013).
[CrossRef]

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Muñoz-Matutano, G.

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

Nagamune, Y.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Nakamura, Y.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Nakaoka, T.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Néel, D.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Nelson, E. C.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Nishinaga, T.

X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

Noda, T.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Noge, H.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Nomura, M.

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

Nowak, A. K.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Painter, O.

Park, H.-G.

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

Parkins, S.

A. L. Grimsmo and S. Parkins, “Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime,” Phys. Rev. A87(3), 033814 (2013).
[CrossRef]

Petroff, P.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

Postigo, P. A.

J. M. Llorens, I. Prieto, L. E. Munioz-Camuniez, and P. A. Postigo, “Analysis of the strong coupling regime of a quantum well in a photonic crystal microcavity and its polarization dependence studied by the finite-difference time-domain method,” J. Opt. Soc. Am. B30(5), 1222–1231 (2013).
[CrossRef]

J. Canet-Ferrer, L. J. Martínez, I. Prieto, B. Alén, G. Muñoz-Matutano, D. Fuster, Y. González, M. L. Dotor, L. González, P. A. Postigo, and J. P. Martínez-Pastor, “Purcell effect in photonic crystal microcavities embedding InAs/InP quantum wires,” Opt. Express20(7), 7901–7914 (2012).
[CrossRef] [PubMed]

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

L. J. Martínez, B. Alén, I. Prieto, D. Fuster, L. González, Y. González, M. L. Dotor, and P. A. Postigo, “Room temperature continuous wave operation in a photonic crystal microcavity laser with a single layer of InAs/InP self-assembled quantum wires,” Opt. Express17(17), 14993–15000 (2009).
[CrossRef] [PubMed]

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Prieto, I.

Ripalda, J. M.

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Ritchie, D. A.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Robles, C.

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Rogers, J. A.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Rudra, A.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Photonic-crystal microcavity laser with site-controlled quantum-wire active medium,” Opt. Express17(20), 18178–18183 (2009).
[CrossRef] [PubMed]

Ruiz, A.

F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
[CrossRef]

Sagnes, I.

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

Sakaki, H.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

Sakoda, K.

Sam-Giao, D.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Santori, C.

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Scherer, A.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Schmidt, O. G.

H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
[CrossRef]

Scofield, A. C.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Semond, F.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Sergent, S.

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Shapiro, J. N.

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Shen, X. Q.

X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993).
[CrossRef]

Sherwin, M.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Shields, A. J.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Skolnick, M. S.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Small, A.

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

Smith, J. S.

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

Solomon, G.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Solomon, G. S.

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Stevens, B. J.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Stobbe, S.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Subramania, G.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Sugimoto, Y.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Taboada, A. G.

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Takayama, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

Tanaka, Y.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

Tartakovski, I. A.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Taylor, R. J. E.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

Tsuchiya, M.

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

van der Meulen, H. P.

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Verma, V.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Villas-Boas, J. M.

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

Vuckovic, J.

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Waks, E.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

Wang, G. T.

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

Ward, M. B.

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Wasley, N. A.

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

Watanabe, H.

Williams, D. M.

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Wiltzius, P.

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Yamamoto, Y.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

Yariv, A.

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

Yuan, Z.

Zhang, B.

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

ACS Nano (1)

J. Martín-Sánchez, G. Muñoz-Matutano, J. Herranz, J. Canet-Ferrer, B. Alén, Y. González, P. Alonso-González, D. Fuster, L. González, J. Martínez-Pastor, and F. Briones, “Single photon emission from site-controlled InAs quantum dots grown on GaAs(001) patterned substrates,” ACS Nano3(6), 1513–1517 (2009).
[CrossRef] [PubMed]

Appl. Phys. A. (1)

F. Briones, L. González, and A. Ruiz, “Atomic layer molecular beam epitaxy (Almbe) of III–V compounds: growth modes and applications,” Appl. Phys. A.49, 729–737 (1989).
[CrossRef]

Appl. Phys. Lett. (7)

A. R. Alija, L. J. Martínez, A. García-Martín, M. L. Dotor, D. Golmayo, and P. A. Postigo, “Tuning of spontaneous emission of two-dimensional photonic crystal microcavities by accurate control of slab thickness,” Appl. Phys. Lett.86(14), 141101 (2005).
[CrossRef]

M. Arita, S. Ishida, S. Kako, S. Iwamoto, and Y. Arakawa, “AlN air-bridge photonic crystal nanocavities demonstrating high quality factor,” Appl. Phys. Lett.91(5), 051106 (2007).
[CrossRef]

D. Néel, S. Sergent, M. Mexis, D. Sam-Giao, T. Guillet, C. Brimont, T. Bretagnon, F. Semond, B. Gayral, S. David, X. Checoury, and P. Boucaud, “AlN photonic crystal nanocavities realized by epitaxial conformal growth on nanopatterned silicon substrate,” Appl. Phys. Lett.98(26), 261106 (2011).
[CrossRef]

J. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, “High quality molecular beam epitaxial growth on patterned GaAs substrates,” Appl. Phys. Lett.47(7), 712–715 (1985).
[CrossRef]

I. J. Luxmoore, E. D. Ahmadi, N. A. Wasley, A. M. Fox, I. A. Tartakovski, A. B. Krysa, and M. S. Skolnick, “Control of spontaneous emission from InP single quantum dots in GaInP photonic crystal nanocavities,” Appl. Phys. Lett.97(18), 181104 (2010).
[CrossRef]

S. Azzini, D. Gerace, M. Galli, I. Sagnes, R. Braive, A. Lemaitre, J. Bloch, and D. Bajoni, “Ultra-low threshold polariton lasing in photonic crystal cavities,” Appl. Phys. Lett.99(11), 111106 (2011).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett.87(6), 061107 (2005).
[CrossRef]

J. Appl. Phys. (3)

A. Imamoğlu, S. Falt, J. Dreiser, G. Fernandez, M. Atature, K. Hennessy, A. Badolato, and D. Gerace, “Coupling quantum dot spins to a photonic crystal nanocavity,” J. Appl. Phys.101(8), 081602 (2007).
[CrossRef]

S.-H. Kim, G.-H. Kim, S.-K. Kim, H.-G. Park, Y.-H. Lee, and S.-B. Kim, “Characteristics of a stick waveguide resonator in a two-dimensional photonic crystal slab,” J. Appl. Phys.95(2), 411–416 (2004).
[CrossRef]

S. Koshiba, Y. Nakamura, M. Tsuchiya, H. Noge, H. Kano, Y. Nagamune, T. Noda, and H. Sakaki, “Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as studied on GaAs (001)‐(111)B facet structures,” J. Appl. Phys.76(7), 4138–4144 (1994).
[CrossRef]

J. Cryst. Growth (2)

H. Heidemeyer, C. Müller, and O. G. Schmidt, “Highly ordered arrays of In(Ga)As quantum dots on patterned GaAs (0 0 1) substrates,” J. Cryst. Growth261(4), 444–449 (2004).
[CrossRef]

A. Khatiri, T. J. Krzyzewski, C. F. McConville, and T. S. Jones, “Atomic hydrogen cleaning of low-index GaAs surfaces,” J. Cryst. Growth282(1-2), 1–6 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively coupled plasma etching of two-dimensional GaAs photonic crystals,” J. Vac. Sci. Technol. B27(5), L21–L24 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

X. Q. Shen and T. Nishinaga, “Arsenic pressure dependence of the surface diffusion in molecular beam epitaxy on (111)B-(001) mesa-etched GaAs substrates studied by in situ scanning microprobe reflection high-energy electron diffraction,” Jpn. J. Appl. Phys.32(2), L1117–L1119 (1993).
[CrossRef]

D. M. Williams, K. M. Groom, B. J. Stevens, D. T. D. Childs, R. J. E. Taylor, S. Khamas, R. A. Hogg, N. Ikeda, and Y. Sugimoto, “Optimisation of coupling between photonic crystal and active elements in an epitaxially regrown GaAs based photonic crystal surface emitting laser,” Jpn. J. Appl. Phys.51(2), 02BG05 (2012).
[CrossRef]

Nano Lett. (2)

G. Subramania, Q. Li, Y. J. Lee, J. J. Figiel, G. T. Wang, and A. J. Fischer, “Gallium nitride based logpile photonic crystals,” Nano Lett.11(11), 4591–4596 (2011).
[CrossRef] [PubMed]

A. C. Scofield, S.-H. Kim, J. N. Shapiro, A. Lin, B. Liang, A. Scherer, and D. L. Huffaker, “Bottom-up photonic crystal lasers,” Nano Lett.11(12), 5387–5390 (2011).
[CrossRef] [PubMed]

Nanotechnology (2)

J. Martín-Sánchez, P. Alonso-González, J. Herranz, Y. González, and L. González, “Site-controlled lateral arrangements of InAs quantum dots grown on GaAs(001) patterned substrates by atomic force microscopy local oxidation nanolithography,” Nanotechnology20(12), 125302 (2009).
[CrossRef] [PubMed]

P. Alonso-González, L. González, Y. González, D. Fuster, I. Fernández-Martínez, J. Martín-Sánchez, and L. Abelman, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Nanotechnology18, 1–4 (2007).

Nat. Mater. (1)

E. C. Nelson, N. L. Dias, K. P. Bassett, S. N. Dunham, V. Verma, M. Miyake, P. Wiltzius, J. A. Rogers, J. J. Coleman, X. Li, and P. V. Braun, “Epitaxial growth of three-dimensionally architectured optoelectronic devices,” Nat. Mater.10(9), 676–681 (2011).
[PubMed]

Nat. Photonics (2)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics1(8), 449–458 (2007).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, and Y. Arakawa, “Laser oscillation in a strongly coupled single-quantum-dot–nanocavity system,” Nat. Photonics6, 279–283 (2010).

Nature (1)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Opt. Express (6)

Phys. Rev. A (1)

A. L. Grimsmo and S. Parkins, “Cavity-QED simulation of qubit-oscillator dynamics in the ultrastrong-coupling regime,” Phys. Rev. A87(3), 033814 (2013).
[CrossRef]

Phys. Rev. B (2)

A. Laucht, J. M. Villas-Boas, S. Stobbe, N. Hauke, F. Hofbauer, G. Bohm, P. Lodahl, M. C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B82(7), 075305 (2010).
[CrossRef]

M. Maragkou, A. K. Nowak, E. Gallardo, H. P. van der Meulen, I. Prieto, L. J. Martínez, P. A. Postigo, and J. M. Calleja, “Controlling the properties of single photon emitters via the Purcell effect,” Phys. Rev. B86(8), 085316 (2012).
[CrossRef]

Phys. Rev. Lett. (6)

D. Fattal, K. Inoue, J. Vucković, C. Santori, G. S. Solomon, and Y. Yamamoto, “Entanglement formation and violation of Bell’s inequality with a semiconductor single photon source,” Phys. Rev. Lett.92(3), 037903 (2004).
[CrossRef] [PubMed]

A. Faraon, A. Majumdar, H. Kim, P. Petroff, and J. Vucković, “Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity,” Phys. Rev. Lett.104(4), 047402 (2010).
[CrossRef] [PubMed]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett.81(5), 1110–1113 (1998).
[CrossRef]

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett.95(1), 013904 (2005).
[CrossRef] [PubMed]

A. Imamoglu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett.83(20), 4204–4207 (1999).
[CrossRef]

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. Lett.73, 235114 (2006).

Physica E (1)

P. Atkinson, M. B. Ward, S. P. Bremner, D. Anderson, T. Farrow, G. A. C. Jones, A. J. Shields, and D. A. Ritchie, “Site control of InAs quantum dot nucleation by ex situ electron-beam lithographic patterning of GaAs substrates,” Physica E32(1-2), 21–24 (2006).
[CrossRef]

Other (2)

I. Prieto, L. E. Munioz-Camuniez, A. G. Taboada, C. Robles, J. M. Ripalda, and P. A. Postigo, “Fabrication of high quality factor GaAs/InAsSb photonic crystal microcavities by inductively coupled plasma etching and fast wet etching,” J. Vac. Sci. Technol. B (to be published).

Lumerical Solutions, Inc., http://www.lumerical.com/tcad-products/fdtd/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the standard (left) and re-grown (right) photonic crystal microcavities (PCMs) fabricated for this work.

Fig. 2
Fig. 2

Scanning electron microscopy (SEM) images of fabricated set of standard L7 and re-grown L7 photonic crystal microcavities (PCMs). (a) SEM image of a standard L7 PCM, (b) close-up of the photonic crystal lattice; (c-d) SEM images of a L7⊥ PCM; (e-f) SEM images of a L7|| PCM.

Fig. 3
Fig. 3

Micro - photoluminescence (μPL) spectra corresponding to a set of L7 photonic crystal microcavities (PCMs); (a) standard L7, (b) L7⊥ and (c) L7||. Quality factor (Q) and spectral position (λ) of the fundamental mode (FM) are presented. Insets show the polarization diagrams for each of the observed L7-PCM modes.

Fig. 4
Fig. 4

Finite difference time domain (FDTD) simulations of standard and re-grown L7-photonic crystal microcavities (PCMs); (a) variation of the quality factor (Q) of the fundamental mode (FM) for the standard L7 with an air filling factor, FF = 0.31 and for the re-grown PCMs defined by the angle (θ) between ΓΚ and the [110] crystallographic direction; the insets describe the model for the holes after the re-growth step and the planar views of the PCMs for θ = 0, 45°, 90° and a schematics of the model for the hole shape; (b) variation of Q with FF for standard L7, L7|| (θ = 0) and L7⊥ (θ = 90°); (c) evolution of the spectral positions of the FM of the standard and re-grown PCMs for different values of r/a where r is the hole radius for standard PCMs and the starting hole radius for the re-grown PCMs. Solid lines represent a guide to the eye.

Metrics