Abstract

In this paper, we examine the performance of a Blu-ray disk (BD) aspheric lens as the objective of a miniaturized scanning nonlinear optical microscope. By combining a single 2D micro-electro mechanical system (MEMS) mirror as the scanner and with different tube lens pairs, the field of view (FOV) of the studied microscope varies from 59 μm × 93 μm up to 178 μm × 280 μm, while the corresponding lateral resolution varies from 0.6 μm to 2 μm for two-photon fluorescence (2PF) signals. With a 34/s video frame rate, in vivo dynamic observation of zebrafish heartbeat through 2PF of the excited green fluorescence protein (GFP) is demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
    [CrossRef] [PubMed]
  3. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express5(8), 169–175 (1999).
    [CrossRef] [PubMed]
  4. T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett.31(7), 930–932 (2006).
    [CrossRef] [PubMed]
  5. S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
    [CrossRef]
  6. M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomed. Opt. Express2(8), 2317–2328 (2011).
    [CrossRef] [PubMed]
  7. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003).
    [CrossRef] [PubMed]
  8. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
    [CrossRef] [PubMed]
  9. R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
    [CrossRef] [PubMed]
  10. R. P. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” in Imaging: A Laboratory Manual (Cold Spring Harbor Laboratory, 2011).
  11. M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010).
    [CrossRef] [PubMed]
  12. F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
    [CrossRef] [PubMed]
  13. T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012).
    [CrossRef] [PubMed]
  14. J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
    [CrossRef]
  15. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004).
    [CrossRef] [PubMed]
  16. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
    [CrossRef] [PubMed]
  17. R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express16(25), 20588–20596 (2008).
    [CrossRef] [PubMed]
  18. R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt.48(18), 3396–3400 (2009).
    [CrossRef] [PubMed]
  19. C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
    [CrossRef] [PubMed]
  20. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
    [CrossRef] [PubMed]
  21. H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008).
    [CrossRef] [PubMed]
  22. Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express1(4), 1159–1172 (2010).
    [CrossRef] [PubMed]
  23. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006).
    [CrossRef] [PubMed]
  24. Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
    [CrossRef] [PubMed]
  25. Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett.34(7), 953–955 (2009).
    [CrossRef] [PubMed]
  26. Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010).
    [CrossRef] [PubMed]
  27. K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36(7), 1299–1301 (2011).
    [CrossRef] [PubMed]
  28. W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
    [CrossRef] [PubMed]
  29. J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
    [CrossRef] [PubMed]
  30. Y. Zhang, K. Murari, W. Liang, J. Xi, Y. Chen, M.-J. Li, Z. Bhujwalla, K.Glunte, and X. Li, “Scanning nonlinear endomicroscopy technology for intrinsic imaging of biological tissues,” in CLEO: Applications and Technology, paper ATh5A.1 (2012).
  31. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998).
    [CrossRef] [PubMed]
  32. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
    [CrossRef] [PubMed]
  33. F. Helmchen, D. W. Tank, and W. Denk, “Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core,” Appl. Opt.41(15), 2930–2934 (2002).
    [CrossRef] [PubMed]
  34. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004).
    [CrossRef] [PubMed]
  35. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
    [CrossRef] [PubMed]
  36. C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
    [CrossRef] [PubMed]
  37. T.-M. Liu, M.-C. Chan, I.-H. Chen, S.-H. Chia, and C.-K. Sun, “Miniaturized multiphoton microscope with a 24Hz frame-rate,” Opt. Express16(14), 10501–10506 (2008).
    [CrossRef] [PubMed]
  38. S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express18(16), 17382–17391 (2010).
    [CrossRef] [PubMed]
  39. E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).
  40. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
    [CrossRef] [PubMed]
  41. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14(3), 1027–1032 (2006).
    [CrossRef] [PubMed]
  42. L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt.12(4), 040501 (2007).
    [CrossRef] [PubMed]
  43. W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
    [CrossRef] [PubMed]
  44. S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
    [CrossRef] [PubMed]
  45. http://panasonic.net/blu-ray/technology/story01/
  46. G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC, 2012).
  47. J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).
  48. S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express12(25), 6122–6128 (2004).
    [CrossRef] [PubMed]
  49. S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing (California Technical, 1997).
  50. M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
    [CrossRef]
  51. R. F. Fischer and B. Tadic, Optical System Design (McGtaw-Hill, 2000).
  52. D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32(3), 444–462 (1966).
  53. J. P. de Villiers, F. W. Leuschner, and R. Geldenhuys, “Centi-pixel accurate real-time inverse distortion correction,” in International Symposium on Optomechatronic Technologies, SPIE (2008).
    [CrossRef]
  54. C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
    [CrossRef] [PubMed]
  55. C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
    [CrossRef] [PubMed]
  56. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
    [CrossRef] [PubMed]
  57. M. Westerfield, The Zebrafish Book, 3rd ed. (University of Oregon, 1995).

2012

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012).
[CrossRef] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
[CrossRef]

2011

2010

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010).
[CrossRef] [PubMed]

Y. Zhao, H. Nakamura, and R. J. Gordon, “Development of a versatile two-photon endoscope for biological imaging,” Biomed. Opt. Express1(4), 1159–1172 (2010).
[CrossRef] [PubMed]

Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010).
[CrossRef] [PubMed]

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

2009

2008

2007

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt.12(4), 040501 (2007).
[CrossRef] [PubMed]

2006

2005

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

2004

2003

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003).
[CrossRef] [PubMed]

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

2002

2001

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

1999

1998

1990

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1986

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
[CrossRef] [PubMed]

1966

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32(3), 444–462 (1966).

Acker, H.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Ahn, Y.-C.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Aksay, E.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Allen, J.

Anderson, E. P.

Bao, H.

Barretto, R. P. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).

Ben-Yakar, A.

Berchner-Pfannschmidt, U.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Bestvater, F.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Bonoli, C.

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

Bortoletto, F.

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

Brown, C. M.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Brown, D. C.

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32(3), 444–462 (1966).

Buess, G.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Burns, L. D.

Chan, M.-C.

Chen, I.-H.

Chen, L.-J.

Chen, M.

Chen, P.

Chen, S. Y.

Chen, S.-U.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

Chen, S.-Y.

M.-R. Tsai, S.-Y. Chen, D.-B. Shieh, P.-J. Lou, and C.-K. Sun, “In vivo optical virtual biopsy of human oral mucosa with harmonic generation microscopy,” Biomed. Opt. Express2(8), 2317–2328 (2011).
[CrossRef] [PubMed]

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

Chen, Y.

Chen, Z.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Cheng, N.-C.

Chia, S.-H.

Ciubotaru, C. D.

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

Cobb, M. J.

Cocker, E. D.

Cranfield, C.

Denk, W.

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
[CrossRef] [PubMed]

Duponchel, L.

M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
[CrossRef]

Durr, N. J.

Engelbrecht, C. J.

Ferhanoglu, O.

Fermann, M. E.

Feurer, T.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Flusberg, B. A.

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).

Foster, M. A.

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
[CrossRef] [PubMed]

Fu, L.

Gaeta, A. L.

Göbel, W.

Gordon, R. J.

Gu, M.

Guol, S.-H.

Hacker, M.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Heckel-Pompey, A.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Helmchen, F.

Hoy, C. L.

Hsiao, C.-D.

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Hsieh, F.-J.

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Huang, C.-J.

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Huang, H.-I.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

Jain, A.

Johnston, R. S.

Jung, J. C.

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003).
[CrossRef] [PubMed]

E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).

Jung, W.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Kao, C.-L.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

Kerr, J. N. D.

Knittel, J.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Kobat, D.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

König, K.

Krasieva, T. B.

Le Harzic, R.

Lee, W.-J.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

Leng, Y.

Levene, M. J.

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012).
[CrossRef] [PubMed]

Li, M.-J.

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
[CrossRef] [PubMed]

K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36(7), 1299–1301 (2011).
[CrossRef] [PubMed]

Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010).
[CrossRef] [PubMed]

Li, S.

Li, X.

Liang, W.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
[CrossRef] [PubMed]

Liao, Y.-H.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

Lin, C.-H.

Lin, C.-Y.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett.31(7), 930–932 (2006).
[CrossRef] [PubMed]

Lin, K. H.

Liu, T.-M.

Lou, P.-J.

MacDonald, D. J.

Mammano, F.

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

McCormic, D. T.

McCormick, D.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

Mehta, A. D.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Messerschmidt, B.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

R. Le Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt.48(18), 3396–3400 (2009).
[CrossRef] [PubMed]

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express16(25), 20588–20596 (2008).
[CrossRef] [PubMed]

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Moll, K. D.

Murari, K.

Murray, T. A.

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012).
[CrossRef] [PubMed]

Myaing, M. T.

Nakamura, H.

Nimmerjahn, A.

Offroy, M.

M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
[CrossRef]

Ouzounov, D. G.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
[CrossRef] [PubMed]

Panizzolo, P.

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

Pattie, R.

Pavlova, I.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Piyawattanametha, W.

Porwol, T.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Possner, T.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Ra, H.

Riemann, I.

Rivera, D. R.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Roggo, Y.

M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
[CrossRef]

Schnieder, L.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Schnitzer, M. J.

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003).
[CrossRef] [PubMed]

E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).

Seibel, E. J.

Shieh, D.-B.

Silberberg, Y.

Solgaard, O.

Spiess, E.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
[CrossRef] [PubMed]

Stepnoski, R.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Stobrawa, G.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Su, J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Sun, C.-K.

Tai, S. P.

Tai, S.-P.

Tang, S.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Tank, D. W.

Tomov, I. V.

Toth, K.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Tromberg, B. J.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Tsai, H. J.

Tsai, H.-J.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Tsai, M.-R.

Tsai, T.-H.

Tu, C.-T.

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Vance, R.

Webb, W. W.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Weinigel, M.

Wotzlaw, C.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

Wu, H.-Y.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

Wu, Y.

Xi, J.

Xie, H.

Xie, T.

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

Xu, C.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010).
[CrossRef] [PubMed]

Yang, P.-H.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

Yelin, D.

Yildirim, M.

Yu, C.-H.

Zhang, Y.

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36(7), 1299–1301 (2011).
[CrossRef] [PubMed]

Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010).
[CrossRef] [PubMed]

Zhao, Y.

Zipfel, W. R.

Appl. Opt.

Biomed. Opt. Express

Biophys. J.

I. Freund, M. Deutsch, and A. Sprecher, “Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon,” Biophys. J.50(4), 693–712 (1986).
[CrossRef] [PubMed]

Chemom. Intell. Lab. Syst.

M. Offroy, Y. Roggo, and L. Duponchel, “Increasing the spatial resolution of near infrared chemical images (NIR-CI): The super-resolution paradigm applied to pharmaceutical products,” Chemom. Intell. Lab. Syst.117, 183–188 (2012).
[CrossRef]

Dev. Dyn.

C.-J. Huang, C.-T. Tu, C.-D. Hsiao, F.-J. Hsieh, and H.-J. Tsai, “Germ-line transmission of a myocardium-specific GFP transgene reveals critical regulatory elements in the cardiac myosin light chain 2 promoter of zebrafish,” Dev. Dyn.228(1), 30–40 (2003).
[CrossRef] [PubMed]

Fish Shellfish Immunol.

C.-Y. Lin, P.-H. Yang, C.-L. Kao, H.-I. Huang, and H.-J. Tsai, “Transgenic zebrafish eggs containing bactericidal peptide is a novel food supplement enhancing resistance to pathogenic infection of fish,” Fish Shellfish Immunol.28(3), 419–427 (2010).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

S.-Y. Chen, S.-U. Chen, H.-Y. Wu, W.-J. Lee, Y.-H. Liao, and C.-K. Sun, “In vivo virtual biopsy of human skin by using noninvasive higher harmonic generation microscopy,” IEEE J. Sel. Top. Quantum Electron.16(3), 478–492 (2010).
[CrossRef]

J. Biomed. Opt.

T. A. Murray and M. J. Levene, “Singlet gradient index lens for deep in vivo multiphoton microscopy,” J. Biomed. Opt.17(2), 021106 (2012).
[CrossRef] [PubMed]

Y. Wu, Y. Zhang, J. Xi, M.-J. Li, and X. Li, “Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation,” J. Biomed. Opt.15(6), 060506 (2010).
[CrossRef] [PubMed]

W. Liang, K. Murari, Y. Zhang, Y. Chen, M.-J. Li, and X. Li, “Increased illumination uniformity and reduced photodamage offered by the Lissajous scanning in fiber-optic two-photon endomicroscopy,” J. Biomed. Opt.17(2), 021108 (2012).
[CrossRef] [PubMed]

L. Fu, A. Jain, C. Cranfield, H. Xie, and M. Gu, “Three-dimensional nonlinear optical endoscopy,” J. Biomed. Opt.12(4), 040501 (2007).
[CrossRef] [PubMed]

S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, and Z. Chen, “Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning,” J. Biomed. Opt.14(3), 034005 (2009).
[CrossRef] [PubMed]

J. Microsc.

E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, and H. Acker, “Two-photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP,” J. Microsc.217(3), 200–204 (2005).
[CrossRef] [PubMed]

J. Neurophysiol.

J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol.92(5), 3121–3133 (2004).
[CrossRef] [PubMed]

Nat. Methods

R. P. J. Barretto, B. Messerschmidt, and M. J. Schnitzer, “In vivo fluorescence imaging with high-resolution microlenses,” Nat. Methods6(7), 511–512 (2009).
[CrossRef] [PubMed]

Opt. Commun.

J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, and T. Possner, “Endoscope-compatible confocal microscope using a gradient index-lens system,” Opt. Commun.188(5–6), 267–273 (2001).
[CrossRef]

Opt. Express

C. J. Engelbrecht, R. S. Johnston, E. J. Seibel, and F. Helmchen, “Ultra-compact fiber-optic two-photon microscope for functional fluorescence imaging in vivo,” Opt. Express16(8), 5556–5564 (2008).
[CrossRef] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express5(8), 169–175 (1999).
[CrossRef] [PubMed]

C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express16(13), 9996–10005 (2008).
[CrossRef] [PubMed]

C. L. Hoy, O. Ferhanoğlu, M. Yildirim, W. Piyawattanametha, H. Ra, O. Solgaard, and A. Ben-Yakar, “Optical design and imaging performance testing of a 9.6-mm diameter femtosecond laser microsurgery probe,” Opt. Express19(11), 10536–10552 (2011).
[CrossRef] [PubMed]

T.-M. Liu, M.-C. Chan, I.-H. Chen, S.-H. Chia, and C.-K. Sun, “Miniaturized multiphoton microscope with a 24Hz frame-rate,” Opt. Express16(14), 10501–10506 (2008).
[CrossRef] [PubMed]

S.-H. Chia, C.-H. Yu, C.-H. Lin, N.-C. Cheng, T.-M. Liu, M.-C. Chan, I.-H. Chen, and C.-K. Sun, “Miniaturized video-rate epi-third-harmonic-generation fiber-microscope,” Opt. Express18(16), 17382–17391 (2010).
[CrossRef] [PubMed]

Y. Wu, Y. Leng, J. Xi, and X. Li, “Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues,” Opt. Express17(10), 7907–7915 (2009).
[CrossRef] [PubMed]

R. Le Harzic, M. Weinigel, I. Riemann, K. König, and B. Messerschmidt, “Nonlinear optical endoscope based on a compact two axes piezo scanner and a miniature objective lens,” Opt. Express16(25), 20588–20596 (2008).
[CrossRef] [PubMed]

L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express14(3), 1027–1032 (2006).
[CrossRef] [PubMed]

S.-P. Tai, M.-C. Chan, T.-H. Tsai, S.-H. Guol, L.-J. Chen, and C.-K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express12(25), 6122–6128 (2004).
[CrossRef] [PubMed]

Opt. Lett.

W. Jung, S. Tang, D. T. McCormic, T. Xie, Y.-C. Ahn, J. Su, I. V. Tomov, T. B. Krasieva, B. J. Tromberg, and Z. Chen, “Miniaturized probe based on a microelectromechanical system mirror for multiphoton microscopy,” Opt. Lett.33(12), 1324–1326 (2008).
[CrossRef] [PubMed]

W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett.34(15), 2309–2311 (2009).
[CrossRef] [PubMed]

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004).
[CrossRef] [PubMed]

H. Bao, J. Allen, R. Pattie, R. Vance, and M. Gu, “Fast handheld two-photon fluorescence microendoscope with a 475 μm × 475 μm field of view for in vivo imaging,” Opt. Lett.33(12), 1333–1335 (2008).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett.31(8), 1076–1078 (2006).
[CrossRef] [PubMed]

Y. Wu, J. Xi, M. J. Cobb, and X. Li, “Scanning fiber-optic nonlinear endomicroscopy with miniature aspherical compound lens and multimode fiber collector,” Opt. Lett.34(7), 953–955 (2009).
[CrossRef] [PubMed]

K. Murari, Y. Zhang, S. Li, Y. Chen, M.-J. Li, and X. Li, “Compensation-free, all-fiber-optic, two-photon endomicroscopy at 1.55 μm,” Opt. Lett.36(7), 1299–1301 (2011).
[CrossRef] [PubMed]

J. Xi, Y. Chen, Y. Zhang, K. Murari, M.-J. Li, and X. Li, “Integrated multimodal endomicroscopy platform for simultaneous en face optical coherence and two-photon fluorescence imaging,” Opt. Lett.37(3), 362–364 (2012).
[CrossRef] [PubMed]

M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett.23(1), 52–54 (1998).
[CrossRef] [PubMed]

D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett.27(17), 1513–1515 (2002).
[CrossRef] [PubMed]

T.-H. Tsai, C.-Y. Lin, H. J. Tsai, S. Y. Chen, S. P. Tai, K. H. Lin, and C.-K. Sun, “Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section,” Opt. Lett.31(7), 930–932 (2006).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett.28(11), 902–904 (2003).
[CrossRef] [PubMed]

M. Chen, C. Xu, and W. W. Webb, “Endoscope lens with dual fields of view and resolutions for multiphoton imaging,” Opt. Lett.35(16), 2735–2737 (2010).
[CrossRef] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett.29(21), 2521–2523 (2004).
[CrossRef] [PubMed]

B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett.30(17), 2272–2274 (2005).
[CrossRef] [PubMed]

Photogramm. Eng.

D. C. Brown, “Decentering distortion of lenses,” Photogramm. Eng.32(3), 444–462 (1966).

PLoS ONE

F. Bortoletto, C. Bonoli, P. Panizzolo, C. D. Ciubotaru, and F. Mammano, “Multiphoton fluorescence microscopy with GRIN objective aberration correction by low order adaptive optics,” PLoS ONE6(7), e22321 (2011).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U. S. A.

D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, and C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U. S. A.108(43), 17598–17603 (2011).
[CrossRef] [PubMed]

Science

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other

R. P. Barretto and M. J. Schnitzer, “In vivo optical microendoscopy for imaging cells lying deep within live tissue,” in Imaging: A Laboratory Manual (Cold Spring Harbor Laboratory, 2011).

Y. Zhang, K. Murari, W. Liang, J. Xi, Y. Chen, M.-J. Li, Z. Bhujwalla, K.Glunte, and X. Li, “Scanning nonlinear endomicroscopy technology for intrinsic imaging of biological tissues,” in CLEO: Applications and Technology, paper ATh5A.1 (2012).

E. D. Cocker, R. P. J. Barretto, J. C. Jung, B. A. Flusberg, H. Ra, O. Solgaard, and M. J. Schnitzer, “A portable two-photon fluorescence microendoscope based on a two-dimensional scanning mirror,” in Optical MEMS and Nanophotonics, 2007 IEEE/LEOS International Conference, 6–7 (2007).

J. P. de Villiers, F. W. Leuschner, and R. Geldenhuys, “Centi-pixel accurate real-time inverse distortion correction,” in International Symposium on Optomechatronic Technologies, SPIE (2008).
[CrossRef]

R. F. Fischer and B. Tadic, Optical System Design (McGtaw-Hill, 2000).

S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing (California Technical, 1997).

http://panasonic.net/blu-ray/technology/story01/

G. F. Marshall and G. E. Stutz, Handbook of Optical and Laser Scanning, 2nd ed. (CRC, 2012).

J. B. Pawley, Handbook of Biological Confocal Microscopy, 3rd ed. (Springer, 2006).

M. Westerfield, The Zebrafish Book, 3rd ed. (University of Oregon, 1995).

Supplementary Material (1)

» Media 1: AVI (3984 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The mounted MEMS scanning mirror chip. The mirror is the tiny round object in the very center.

Fig. 2
Fig. 2

Replaceable tube lens pairs mounted with the packaged system with magnification ratio 1:1, 1:3, and 1:1.5 (from left to right). A dichroic beam splitter is mounted in the left square mount in order to separate the excitation light and the collected 2PF signal. The cylinder on the right is composed of a replaceable tube lens pair and the MEMS scanning unit.

Fig. 3
Fig. 3

The ZEMAX design parameters of the 1:1 home-made tube lens pair with the BD lens.

Fig. 4
Fig. 4

The simulated result by ZEMAX showing the optical path difference (OPD) of the 1:1 tube lens pair with the substitute of the BD lens. The figure has 5 groups, which correspond to incidences from 5 different incident angles (0°, 2°, 4°, 8°, 10°). Each group has two graphs, which are the OPD in x and in y directions respectively. The test wavelength is 0.920 μm, and the result indicates the maximum wavefront difference is smaller than λ/2, so the resolution won’t be affected much by the oblique incidence.

Fig. 5
Fig. 5

Free-space setup of the experiment.

Fig. 6
Fig. 6

Fiber-based setup of the experiment. The setup is similar to Fig. 5. Collimators can be directly mounted to the system for fiber-based light source or signal collection delivery. Photonic crystal fibers (PCF) could be used to deliver the light from the bulk laser source to the imaging head to prevent the pulse distortion, whereas multi-mode fibers (MMF) could be used for the delivery of the collected signal.

Fig. 7
Fig. 7

The FOV of the 2PF microscope by using the BD lens as the objective with different tube lens pairs. (a) FOV: 178 μm × 280 μm with the 1:1 tube lens pair. (b) FOV: 121 μm × 200 μm with the 1:1.5 tube lens pair. (c) FOV: 59 μm × 93 μm with the 1:3 tube lens.

Fig. 8
Fig. 8

Sample pictures for resolution analysis of the 2PF microscope by using the BD lens with (a) the 1:1, (b) the 1:1.5, and (c) the 1:3 tube lens pairs. First, each figure was divided into 4 pieces. Then one of the quadrants was further divided into a 3 × 3 area and labeled from 1 to 9. Due to oblique incidence, we expect a difference of the resolution between the central part of the imaging area (ex: area 1, area 2, or area 4) and the marginal part of the imaging area (ex: area 3, area 7, or area 9).

Fig. 9
Fig. 9

2PF images of GFP zebrafish (BD lens with the 1:1 tube lens pair). (a) and (b) Head of the fish. (c) Eyes of the fish. (d) Body of the fish. The fish were all 96 hpf (hours post fertilization). The FOV of each image is 178 μm × 280 μm before being stitched together.

Fig. 10
Fig. 10

The acquired 2PF image of 1 μm-diameter green fluorescent beads, clearly resolving individual beads with a sub-micron resolution. (BD lens with the 1:3 tube lens pair) FOV: 59 μm × 93 μm.

Fig. 11
Fig. 11

Time lapse image sequence of the heartbeat of the zebrafish with myocardium GFP (BD lens with the 1:1 tube lens pair) from the lateral view. With a 34/s frame rate, the time interval between each image is about 0.0294 s. FOV: 178 μm × 280 μm. The attached file (Media 1) is an 11 s video. For the first 3 seconds, the observation depth was kept the same. Then we slightly adjusted the depth deeper to observe different parts of the heart with a rate of 100 μm/s.

Tables (1)

Tables Icon

Table 1 Image resolution from different imaging area of the BD lens-based 2PF microscope with different tube lens pairs. (unit: μm)

Metrics