Abstract

We report on the time-resolved coherent anti-Stokes Raman spectroscopy of phonon dephasing in micro- and nanocrystalline diamond films. The dephasing times T2 were found to be dependent on the morphology of diamond films (average size of crystals and content of nondiamond carbon phase) and changed from 0.7 to 1.72 ps. The dephasing times were found to be temperature independent in the range 10-295 K. In addition to diamond Raman active phonon mode at 1332 cm−1, we investigated also the dynamics of a broad Raman peak at 1530 cm−1 which is present in samples with higher content of nondiamond sp2 hybridized carbon phase. This peak was found to be homogenously broadened with very fast dephasing (T2~50 fs).

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
    [Crossref] [PubMed]
  2. R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2-3), 207–220 (1997).
    [Crossref]
  3. W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
    [Crossref]
  4. K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
    [Crossref]
  5. J. A. Giordmaine and W. Kaiser, “Light Scattering by Coherently Driven Lattice Vibrations,” Phys. Rev. 144(2), 676–688 (1966).
    [Crossref]
  6. P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
    [Crossref] [PubMed]
  7. M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
    [Crossref]
  8. S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
    [Crossref]
  9. A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos Trans A Math Phys Eng Sci 362(1824), 2477–2512 (2004).
    [Crossref] [PubMed]
  10. A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
    [Crossref]
  11. K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
    [Crossref]
  12. K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
    [Crossref]
  13. K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
    [Crossref] [PubMed]
  14. M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
    [Crossref]
  15. R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
    [Crossref]
  16. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
    [Crossref]
  17. P. Němec and P. Malý, “Temperature dependence of coherent phonon dephasing in CsPbCl3 nanocrystals,” Phys. Rev. B 72(23), 235324 (2005).
    [Crossref]
  18. A. A. Prokofiev, A. N. Poddubny, and I. N. Yassievich, “Phonon decay in silicon nanocrystals,” http://arxiv.org/abs/1304.1623 (2013).
  19. S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
    [Crossref]
  20. M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
    [Crossref]
  21. M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
    [Crossref]
  22. S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
    [Crossref]
  23. R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
    [Crossref]
  24. Z. Sui and I. P. Herman, “Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures,” Phys. Rev. B Condens. Matter 48(24), 17938–17953 (1993).
    [Crossref] [PubMed]
  25. L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,” J. Appl. Phys. 78(11), 6709 (1995).
    [Crossref]
  26. P. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
    [Crossref]
  27. A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
    [Crossref]
  28. E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
    [Crossref]
  29. M. Hase and M. Kitajima, “Interaction of coherent phonons with defects and elementary excitations,” J. Phys.: Condens. Matter 22(7), 073201 (2010).
    [Crossref]
  30. M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
    [Crossref]

2012 (1)

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

2011 (2)

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

2010 (3)

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

M. Hase and M. Kitajima, “Interaction of coherent phonons with defects and elementary excitations,” J. Phys.: Condens. Matter 22(7), 073201 (2010).
[Crossref]

2009 (2)

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

2008 (1)

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

2006 (1)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

2005 (1)

P. Němec and P. Malý, “Temperature dependence of coherent phonon dephasing in CsPbCl3 nanocrystals,” Phys. Rev. B 72(23), 235324 (2005).
[Crossref]

2004 (1)

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos Trans A Math Phys Eng Sci 362(1824), 2477–2512 (2004).
[Crossref] [PubMed]

2000 (1)

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

1999 (1)

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

1998 (1)

M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
[Crossref]

1997 (1)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2-3), 207–220 (1997).
[Crossref]

1995 (1)

L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,” J. Appl. Phys. 78(11), 6709 (1995).
[Crossref]

1993 (3)

Z. Sui and I. P. Herman, “Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures,” Phys. Rev. B Condens. Matter 48(24), 17938–17953 (1993).
[Crossref] [PubMed]

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

1992 (1)

W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
[Crossref]

1987 (1)

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

1981 (1)

R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
[Crossref]

1978 (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[Crossref]

1971 (2)

A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
[Crossref]

E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
[Crossref]

1970 (1)

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[Crossref]

1966 (2)

J. A. Giordmaine and W. Kaiser, “Light Scattering by Coherently Driven Lattice Vibrations,” Phys. Rev. 144(2), 676–688 (1966).
[Crossref]

P. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[Crossref]

Akimov, A. V.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Albrecht, W.

W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
[Crossref]

Anastassakis, E.

E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
[Crossref]

Arms, D. A.

M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
[Crossref]

Babchenko, O.

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

Baroni, S.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Bergman, L.

L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,” J. Appl. Phys. 78(11), 6709 (1995).
[Crossref]

Bustard, P. J.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

Champion, T.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Dijkhuis, J. I.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Dimitrov, S. D.

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

Dollfus, P.

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

Dooley, C. J.

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

England, D.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Feoktistov, N. A.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Ferrari, A. C.

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos Trans A Math Phys Eng Sci 362(1824), 2477–2512 (2004).
[Crossref] [PubMed]

Fiebig, T.

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

Galdin-Retailleau, S.

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

Giannozzi, P.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Giordmaine, J. A.

J. A. Giordmaine and W. Kaiser, “Light Scattering by Coherently Driven Lattice Vibrations,” Phys. Rev. 144(2), 676–688 (1966).
[Crossref]

Gogotsi, Y.

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

Hase, M.

M. Hase and M. Kitajima, “Interaction of coherent phonons with defects and elementary excitations,” J. Phys.: Condens. Matter 22(7), 073201 (2010).
[Crossref]

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Havel, M.

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

Herman, I. P.

Z. Sui and I. P. Herman, “Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures,” Phys. Rev. B Condens. Matter 48(24), 17938–17953 (1993).
[Crossref] [PubMed]

Hishita, S.

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Holzapfel, W.

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

Hwang, H. C.

E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
[Crossref]

Ishida, H.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Ishioka, K.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Ishitani, A.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Jaksch, D.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Jin, X.-M.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Kaiser, W.

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[Crossref]

A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
[Crossref]

J. A. Giordmaine and W. Kaiser, “Light Scattering by Coherently Driven Lattice Vibrations,” Phys. Rev. 144(2), 676–688 (1966).
[Crossref]

Kaplyanskii, A. A.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Karch, K.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Katagiri, G.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Kitajima, M.

M. Hase and M. Kitajima, “Interaction of coherent phonons with defects and elementary excitations,” J. Phys.: Condens. Matter 22(7), 073201 (2010).
[Crossref]

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Klemens, P.

P. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[Crossref]

Kromka, A.

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

Kurz, H.

W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
[Crossref]

Kutt, W. A.

W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
[Crossref]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Langford, N. K.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

Laubereau, A.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[Crossref]

A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
[Crossref]

Lee, K. C.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Leonhardt, R.

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

Lorenz, V. O.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Macrander, A. T.

M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
[Crossref]

Maegawa, M.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Malý, P.

P. Němec and P. Malý, “Temperature dependence of coherent phonon dephasing in CsPbCl3 nanocrystals,” Phys. Rev. B 72(23), 235324 (2005).
[Crossref]

Martin, R. M.

R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
[Crossref]

Merlin, R.

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2-3), 207–220 (1997).
[Crossref]

Michelberger, P.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Mochalin, V. N.

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Mori, Y.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Nemanich, R. J.

L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,” J. Appl. Phys. 78(11), 6709 (1995).
[Crossref]

R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
[Crossref]

Nemec, P.

P. Němec and P. Malý, “Temperature dependence of coherent phonon dephasing in CsPbCl3 nanocrystals,” Phys. Rev. B 72(23), 235324 (2005).
[Crossref]

Nunn, J.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Osswald, S.

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

Pavone, P.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Perry, C. H.

E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
[Crossref]

Petek, H.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Pevtsov, A. B.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Prawer, S.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Ramdas, A. K.

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[Crossref]

Reim, K.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Reim, K. F.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Remeš, Z.

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

Robertson, J.

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos Trans A Math Phys Eng Sci 362(1824), 2477–2512 (2004).
[Crossref] [PubMed]

Schütt, O.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Schwoerer-Böhning, M.

M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
[Crossref]

Sée, J.

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

Smit, G. D. J.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Solin, S. A.

R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
[Crossref]

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[Crossref]

Spizzirri, P.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Sprague, M. R.

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Strauch, D.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Sui, Z.

Z. Sui and I. P. Herman, “Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures,” Phys. Rev. B Condens. Matter 48(24), 17938–17953 (1993).
[Crossref] [PubMed]

Sussman, B. J.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Trifonov, A. A.

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

Ushida, K.

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Valentin, A.

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

van der Voort, M.

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Varga, M.

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

von der Linde, D.

A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
[Crossref]

Walmsley, I. A.

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Windl, W.

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Yoshikawa, M.

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

Yushin, G.

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

Zinth, W.

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

Appl. Phys. Lett. (3)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

M. Yoshikawa, Y. Mori, M. Maegawa, G. Katagiri, H. Ishida, and A. Ishitani, “Raman scattering from diamond particles,” Appl. Phys. Lett. 62(24), 3114 (1993).
[Crossref]

M. Hase, K. Ishioka, M. Kitajima, K. Ushida, and S. Hishita, “Dephasing of coherent phonons by lattice defects in bismuth films,” Appl. Phys. Lett. 76(10), 1258 (2000).
[Crossref]

Chem. Phys. Lett. (1)

R. Leonhardt, W. Holzapfel, W. Zinth, and W. Kaiser, “Terahertz quantum beats in molecular liquids,” Chem. Phys. Lett. 133(5), 373–377 (1987).
[Crossref]

Diamond Related Materials (1)

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

W. A. Kutt, W. Albrecht, and H. Kurz, “Generation of coherent phonons in condensed media,” IEEE J. Quantum Electron. 28(10), 2434–2444 (1992).
[Crossref]

J. Appl. Phys. (1)

L. Bergman and R. J. Nemanich, “Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films,” J. Appl. Phys. 78(11), 6709 (1995).
[Crossref]

J. Phys. Chem. C (1)

S. D. Dimitrov, C. J. Dooley, A. A. Trifonov, and T. Fiebig, “Femtosecond probing of optical phonon dynamics in quantum-confined CdTe nanocrystals,” J. Phys. Chem. C 113(10), 4198–4201 (2009).
[Crossref]

J. Phys. Condens. Matter (1)

A. Valentin, J. Sée, S. Galdin-Retailleau, and P. Dollfus, “Study of phonon modes in silicon nanocrystals using the adiabatic bond charge model,” J. Phys. Condens. Matter 20(14), 145213 (2008).
[Crossref]

J. Phys.: Condens. Matter (1)

M. Hase and M. Kitajima, “Interaction of coherent phonons with defects and elementary excitations,” J. Phys.: Condens. Matter 22(7), 073201 (2010).
[Crossref]

Nat. Photonics (1)

K. C. Lee, B. J. Sussman, M. R. Sprague, P. Michelberger, K. F. Reim, J. Nunn, N. K. Langford, P. J. Bustard, D. Jaksch, and I. A. Walmsley, “Macroscopic non-classical states and terahertz quantum processing in room-temperature diamond,” Nat. Photonics 6(1), 41–44 (2011).
[Crossref]

Nature (1)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature 464(7285), 45–53 (2010).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

A. C. Ferrari and J. Robertson, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philos Trans A Math Phys Eng Sci 362(1824), 2477–2512 (2004).
[Crossref] [PubMed]

Phys. Rev. (2)

J. A. Giordmaine and W. Kaiser, “Light Scattering by Coherently Driven Lattice Vibrations,” Phys. Rev. 144(2), 676–688 (1966).
[Crossref]

P. Klemens, “Anharmonic decay of optical phonons,” Phys. Rev. 148(2), 845–848 (1966).
[Crossref]

Phys. Rev. B (5)

S. Osswald, V. N. Mochalin, M. Havel, G. Yushin, and Y. Gogotsi, “Phonon confinement effects in the Raman spectrum of nanodiamond,” Phys. Rev. B 80(7), 075419 (2009).
[Crossref]

R. J. Nemanich, S. A. Solin, and R. M. Martin, “Light scattering study of boron nitride microcrystals,” Phys. Rev. B 23(12), 6348–6356 (1981).
[Crossref]

E. Anastassakis, H. C. Hwang, and C. H. Perry, “Temperature dependence of the long-wavelength optical phonons in diamond,” Phys. Rev. B 4(8), 2493–2497 (1971).
[Crossref]

S. A. Solin and A. K. Ramdas, “Raman spectrum of diamond,” Phys. Rev. B 1(4), 1687–1698 (1970).
[Crossref]

P. Němec and P. Malý, “Temperature dependence of coherent phonon dephasing in CsPbCl3 nanocrystals,” Phys. Rev. B 72(23), 235324 (2005).
[Crossref]

Phys. Rev. B Condens. Matter (2)

P. Pavone, K. Karch, O. Schütt, D. Strauch, W. Windl, P. Giannozzi, and S. Baroni, “Ab initio lattice dynamics of diamond,” Phys. Rev. B Condens. Matter 48(5), 3156–3163 (1993).
[Crossref] [PubMed]

Z. Sui and I. P. Herman, “Effect of strain on phonons in Si, Ge, and Si/Ge heterostructures,” Phys. Rev. B Condens. Matter 48(24), 17938–17953 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

M. Schwoerer-Böhning, A. T. Macrander, and D. A. Arms, “Phonon dispersion of diamond measured by inelastic X-ray scattering,” Phys. Rev. Lett. 80(25), 5572–5575 (1998).
[Crossref]

A. Laubereau, D. von der Linde, and W. Kaiser, “Decay time of hot TO phonons in diamond,” Phys. Rev. Lett. 27(12), 802–805 (1971).
[Crossref]

Phys. Status Solidi B (1)

M. Varga, Z. Remeš, O. Babchenko, and A. Kromka, “Optical study of defects in nano-diamond films grown in linear antenna microwave plasma CVD from H2/CH4/CO2 gas mixture,” Phys. Status Solidi B 249(12), 2635–2639 (2012).
[Crossref]

Physica B (1)

M. van der Voort, G. D. J. Smit, A. V. Akimov, J. I. Dijkhuis, N. A. Feoktistov, A. A. Kaplyanskii, and A. B. Pevtsov, “Decay of nonequilibrium phonons in nanocrystalline silicon,” Physica B 263–264, 473–475 (1999).
[Crossref]

Rev. Mod. Phys. (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[Crossref]

Science (1)

K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, “Entangling macroscopic diamonds at room temperature,” Science 334(6060), 1253–1256 (2011).
[Crossref] [PubMed]

Solid State Commun. (1)

R. Merlin, “Generating coherent THz phonons with light pulses,” Solid State Commun. 102(2-3), 207–220 (1997).
[Crossref]

Other (1)

A. A. Prokofiev, A. N. Poddubny, and I. N. Yassievich, “Phonon decay in silicon nanocrystals,” http://arxiv.org/abs/1304.1623 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross section SEM images of the investigated diamond membranes S1-S4 measured under the angle of 30°. Film thicknessess were 1.6, 0.9, 7.7 and 2.1µm, respectively.

Fig. 2
Fig. 2

Raman spectra of the studied diamond membranes S1-S4 excited by cw laser (442 nm).

Fig. 3
Fig. 3

Time-resolved CARS spectra of bulk diamond (IIa, dashed curve) and NCD samples S1-S4 (full curves) measured at the time delay Δt = 0.5 ps after excitation. Curves are normalized and vertically shifted for clarity.

Fig. 4
Fig. 4

Time-resolved CARS of IIa bulk diamond (full symbols) and diamond films S1-S4 (empty symbols) at energy 1332 cm−1 with exponential fits (lines) in semi-log scale. Data were normalized for clarity.

Fig. 5
Fig. 5

Time-resolved CARS of sample S1 at energy 1332 cm−1. Sample temperatures were 10 K (black squares) and 295 K (red triangles). Data were vertically shifted for clarity and compared with exponential fits (lines) in semi-log scale. Inset: Obtained dephasing times T2 (squares) compared with theory using Eq. (1) (red curve).

Fig. 6
Fig. 6

Time-resolved CARS at 1530 cm−1 in samples S3 (green, up-triangles) and S4 (blue, down-triangles) in semi-log scale compared with the convolution of the decay function exp(-Δt/25fs) with the temporal response function of CARS setup (blue line). Inset: CARS spectra in samples S3 and S4 at time delay Δt = 0. Data were normalized for clarity.

Tables (1)

Tables Icon

Table 1 SEM Imaging of Grain Sizes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ(T)=Γ(0)[ 1+2/( e x 1) ],

Metrics