Abstract

A temperature measurement scheme was proposed in a diode end-pumped thin monolithic Yb:YAG laser by analyzing the red-shifting behaviors of each lasing peak. The amount of peak shift was measured on the basis of the threshold lasing spectrum by using a chopped pump beam. In order to determine the effective scale factor, the ratio between the peak shift and the temperature rise, the dynamics of the spectral shift, the output beam profile, and the output power were investigated. The effective scale factor was determined to be about 0.0114 nm/°C in the case of the crystal sandwiched by copper bocks with a hole, wherein the plane stress approximation is valid. On the other hand, the effective scale factor significantly decreased in the case of the crystal sandwiched by sapphire plates.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
    [CrossRef]
  2. P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
    [CrossRef]
  3. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
    [CrossRef]
  4. D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).
  5. H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
    [CrossRef]
  6. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
    [CrossRef]
  7. R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun.123(1–3), 385–393 (1996).
    [CrossRef]
  8. J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
    [CrossRef]
  9. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
    [CrossRef]
  10. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
    [CrossRef]
  11. S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
    [CrossRef]
  12. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
    [CrossRef]
  13. B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
    [CrossRef]
  14. S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
    [CrossRef]
  15. S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).
  16. J. Petit, B. Viana, and Ph. Goldner, “Internal temperature measurement of an ytterbium doped material under laser operation,” Opt. Express19(2), 1138–1146 (2011).
    [CrossRef] [PubMed]
  17. H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
    [CrossRef] [PubMed]
  18. J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
    [CrossRef]
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, 1991). Chap 14.
  20. O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett.31(6), 763–765 (2006).
    [CrossRef] [PubMed]
  21. T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett.19(8), 554–556 (1994).
    [CrossRef] [PubMed]
  22. A. E. Siegman, Laser (Oxford University, 1986). Chap 25.
  23. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
    [CrossRef]
  24. S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
    [CrossRef]
  25. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron.28(4), 1057–1069 (1992).
    [CrossRef]
  26. J. T. Verdeyen, Laser Electronics (Prentice-Hall, 1995), Chaps. 3 and 6.
  27. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970). Chap 13.
  28. X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
    [CrossRef]
  29. D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
    [CrossRef]

2011

2007

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

2006

O. L. Antipov, D. V. Bredikhin, O. N. Eremeykin, A. P. Savikin, E. V. Ivakin, and A. V. Sukhadolau, “Electronic mechanism for refractive-index changes in intensively pumped Yb:YAG laser crystals,” Opt. Lett.31(6), 763–765 (2006).
[CrossRef] [PubMed]

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
[CrossRef]

2005

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

2004

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

2002

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

2001

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

2000

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

1999

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

1998

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

1996

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun.123(1–3), 385–393 (1996).
[CrossRef]

1995

B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
[CrossRef]

1994

T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett.19(8), 554–556 (1994).
[CrossRef] [PubMed]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

1993

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

1992

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron.28(4), 1057–1069 (1992).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

An, K.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Antipov, O. L.

Balembois, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

Beach, R. J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun.123(1–3), 385–393 (1996).
[CrossRef]

Betin, A. A.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Bibeau, C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Bredikhin, D. V.

Brown, D. C.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Bruesselbach, H.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Byren, R.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Chen, G.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Chen, L.-H.

J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
[CrossRef]

Chen, W.

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Chenais, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

Chénais, S.

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

Chough, Y. T.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Cone, R. L.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron.28(4), 1057–1069 (1992).
[CrossRef]

Deng, P.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Dong, J.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Druon, F.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

Ebbers, C. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Emanuel, M. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Equall, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Equall, R. W.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Eremeykin, O. N.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

T. Y. Fan, “Aperture guiding in quasi-three-level lasers,” Opt. Lett.19(8), 554–556 (1994).
[CrossRef] [PubMed]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

Forget, S.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

Fujita, M.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Georges, P.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

Giesen, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Goldner, Ph.

Gong, M.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Honea, E. C.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Huang, S.-L.

J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
[CrossRef]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Ivakin, E. V.

Izawa, Y.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Jancaitis, K. S.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Kaminskii, A. A.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

Kawanaka, J.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Kawashima, T.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Li, C.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Liu, Q.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Lucas-Leclin, G.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

Mangir, M. S.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Matthews, S.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Mitchell, S. C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Moon, H. J.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Neuenschwander, B.

B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Patel, F. D.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Payne, S. A.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Petit, J.

Qiu, H.

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Reeder, R.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

Savikin, A. P.

Shirakawa, A.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

Skidmore, J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Speth, J.

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

Sukhadolau, A. V.

Sumida, D. S.

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Sun, Y.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

Sutton, S. B.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

Tokita, S.

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

Ueda, K.-I.

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

Viana, B.

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Weber, H.

B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
[CrossRef]

Weber, R.

B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
[CrossRef]

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

Xu, J.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Xu, X.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Yan, P.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Yang, P.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Yi, J.-Y.

J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
[CrossRef]

Yin, Z.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Zhao, Z.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Appl. Phys. B

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, “Scalable concept for diode-pumped high-power solid-state lasers,” Appl. Phys. B58(5), 365–372 (1994).
[CrossRef]

S. Tokita, J. Kawanaka, M. Fujita, T. Kawashima, and Y. Izawa, “Sapphire-conductive end-cooling of high power cryogenic Yb:YAG lasers,” Appl. Phys. B80(6), 635–638 (2005).
[CrossRef]

S. Chénais, S. Forget, F. Druon, F. Balembois, and P. Georges, “Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG,” Appl. Phys. B79(2), 221–224 (2004).
[CrossRef]

J. Dong, A. Shirakawa, K.-I. Ueda, and A. A. Kaminskii, “Effect of ytterbium concentration on cw Yb:YAG microchip laser performance at ambient temperature-Part I: Experiments,” Appl. Phys. B89(2–3), 359–365 (2007).
[CrossRef]

IEEE J. Quantum Electron.

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers—Part I: Theoretical analysis and wavefront measurements,” IEEE J. Quantum Electron.40(9), 1217–1234 (2004).
[CrossRef]

B. Neuenschwander, R. Weber, and H. Weber, “Determination of the thermal lens in solid-state lasers with stable cavities,” IEEE J. Quantum Electron.31(6), 1082–1087 (1995).
[CrossRef]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, “High-average-power 1-μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser,” IEEE J. Quantum Electron.34(10), 2010–2019 (1998).
[CrossRef]

F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron.37(1), 135–144 (2001).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron.29(6), 1457–1459 (1993).
[CrossRef]

J.-Y. Yi, L.-H. Chen, and S.-L. Huang, “Efficient and compact Yb:YAG ring laser,” IEEE J. Quantum Electron.42(8), 791–796 (2006).
[CrossRef]

S. Chenais, F. Balembois, F. Druon, G. Lucas-Leclin, and P. Georges, “Thermal lensing in diode-pumped ytterbium lasers- Part II: Evaluation of quantum efficiencies and thermo-optic coefficients,” IEEE J. Quantum Electron.40(9), 1235–1243 (2004).
[CrossRef]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron.28(4), 1057–1069 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. C. Brown, R. L. Cone, Y. Sun, and R. W. Equall, “Yb:YAG absorption at ambient and cryogenic temperatures,” IEEE J. Sel. Top. Quantum Electron.11(3), 604–612 (2005).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys.98, 103514 (2005).
[CrossRef]

J. Lumin.

P. Yang, P. Deng, and Z. Yin, “Concentration quenching in Yb:YAG,” J. Lumin.97(1), 51–54 (2002).
[CrossRef]

Laser Focus World

D. S. Sumida, A. A. Betin, H. Bruesselbach, R. Byren, S. Matthews, R. Reeder, and M. S. Mangir, “Diode-pumped Yb:YAG catches up with Nd:YAG,” Laser Focus World35, 63–70 (1999).

Mater. Lett.

H. Qiu, P. Yang, J. Dong, P. Deng, J. Xu, and W. Chen, “The influence of Yb concentration on laser crystal Yb:YAG,” Mater. Lett.55(1–2), 1–7 (2002).
[CrossRef]

Opt. Commun.

R. J. Beach, “CW theory of quasi-three level end-pumped laser oscillators,” Opt. Commun.123(1–3), 385–393 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

C. Li, Q. Liu, M. Gong, G. Chen, and P. Yan, “Modeling of end-pumped CW Yb:YAG lasers exhibiting non-uniform temperature distribution,” Opt. Quantum Electron.36(8), 745–758 (2004).
[CrossRef]

Phys. Rev. Lett.

H. J. Moon, Y. T. Chough, and K. An, “Cylindrical microcavity laser based on the evanescent-wave-coupled gain,” Phys. Rev. Lett.85(15), 3161–3164 (2000).
[CrossRef] [PubMed]

Prog. Quantum Electron.

S. Chenais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid-state lasers: The case of ytterbium-doped materials,” Prog. Quantum Electron.30, 89–153 (2006).

Solid State Commun.

X. Xu, Z. Zhao, J. Xu, and P. Deng, “Thermal diffusivity, conductivity and expansion of Yb3xY3(1-x)Al5O12 (x = 0.05, 0.1 and 0.25) single crystals,” Solid State Commun.130(8), 529–532 (2004).
[CrossRef]

Other

A. E. Siegman, Laser (Oxford University, 1986). Chap 25.

J. T. Verdeyen, Laser Electronics (Prentice-Hall, 1995), Chaps. 3 and 6.

S. P. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, 1970). Chap 13.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley, 1991). Chap 14.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) Measured pump beam profile at the focal spot in free space, (b) Dependence of pump beam size along the propagation distance. The corresponding locations of two crystal surfaces are indicated accounting for the refraction effect of pump beam in the crystal.

Fig. 3
Fig. 3

(a) CW lasing spectra with Pin at Tc = 30 °C Shifting behaviors of each peak were indicated as horizontal arrows starting from a peak whose position was indicated as a vertical line. The center wavelength (vertical arrow) of the lasing envelope (dotted line) also showed a red-shift, (b) Single shot output power around the threshold (A & B) in pulse mode. (C) ; averaged signal of multiple shots, (c) Behavior of Δλ(τ) with a fixed Pin, measured in a very low chopping frequency.

Fig. 4
Fig. 4

(a) Temperature dependent peak shift at threshold in pulse mode, (b) Dependence of overall peak shift Δλ on Pin at Tc = 30 °C in cw mode. Inset: A peak in cw spectrum (red line) was red-shifted ( Δλ ) from that in the threshold spectrum (blue line) in pulse mode (Pin ~ 0.75 W).

Fig. 5
Fig. 5

(a) Schematic temperature profile in the crystal, (b) Mode distribution of TE M 00 , w 0 ; waist radius, 2a: pump beam size.

Fig. 6
Fig. 6

(a) PD2 signals at several position x transverse to the beam propagation, and the pump signal from PD1. The distance d from the crystal to PD2 was 52 cm, (b) Intensity profile at various τ,w ; beam radius at d = 52 cm.

Fig. 7
Fig. 7

(a) Dynamic of waist radius w 0 with delay time τ at various Τ c , (b) Corresponding effective dioptric power (DP) with delay time τ.

Fig. 8
Fig. 8

Schematic behaviors of λ q and λ q un with delay time in pulse mode.

Fig. 9
Fig. 9

Dynamics of the output power (linear to the voltage of PD3) at various Τ c with P in = 0.85 W.

Fig. 10
Fig. 10

(a) Conductive cooling geometry with sapphires, (b) Measured overall peak shift Δλ with P in at Τ c = 30 °C .

Fig. 11
Fig. 11

Dynamics of the output power at various Τ c .

Tables (1)

Tables Icon

Table 1 Measured (bold) and Estimated (italic) Parameters

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S L u dλ dT = λ n 0 L [ L( dn dT )+ n 0 ( dL dT ) ]= λ n 0 [ dn dT + n 0 α T ] λ n 0 γ.
2 T(r,z)= Q th (r,z) K c .
jn= K c ( T n )=H( T s (r)- T c ).
δ on (r)=2 n 0 ΔL(r)+2 0 L n(T,ε) dz.
δ rel (r)=2 n 0 < ε z >+2 n T <T(r) T c >+2 j=r,θ,z n ε j < ε j >.
< ε z (0)> α T (1+v)<T(0)T(b)> 2v b 2 0 b < T(r)T(b)>rdr+<T(b) T c >.
Δ λ q un ( 1 n 0 n T +[ (1+v) 0.05 n 0 ] α T ) λ q 0 ( T ¯ (0) T ¯ (b) )+( 1 n 0 n T + α T ) λ q 0 ( T ¯ (b) T c ) S L nu ( T ¯ (0) T ¯ (b) )+S L u ( T ¯ (b) T c )S L un ( T ¯ (0) T c ).
δ on (0)=[q+ 2 tan 1 ( L 2 z 0 ) π ] λ q .
ΔλS L eff ( T ¯ (0) T c ).

Metrics