Abstract

Multilayer coatings composed of TiO2, Ta2O5, HfO2, or Al2O3 as high-index materials and SiO2 as low-index material were investigated for laser-induced damage using 1 ps, 5 µJ pulses generated by a mode-locked Yb:YAG thin-disk oscillator operating at a wavelength of 1030 nm and repetition rate of 11.5 MHz. Previously reported linear band gap dependence of damage threshold at kHz repetition rates was confirmed also for the MHz regime. Additionally, we studied the effect of electric field distribution inside of the layer stack. We did not observe any significant influence of thermal effects on the laser-induced damage threshold in this regime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
    [CrossRef]
  2. M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
    [CrossRef]
  3. M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
    [CrossRef] [PubMed]
  4. A. Melninkaitis, T. Tolenis, L. Mažulė, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, R. Drazdys, “Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering,” Appl. Opt. 50(9), C188–C196 (2011).
    [CrossRef] [PubMed]
  5. B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
    [CrossRef] [PubMed]
  6. M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52(7), 1368–1376 (2013).
    [CrossRef] [PubMed]
  7. T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
    [CrossRef] [PubMed]
  8. P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
    [CrossRef] [PubMed]
  9. M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36(13), 2456–2458 (2011).
    [CrossRef] [PubMed]
  10. C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
    [CrossRef] [PubMed]
  11. D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
    [CrossRef] [PubMed]
  12. O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
    [CrossRef] [PubMed]
  13. T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
    [CrossRef] [PubMed]
  14. S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
    [CrossRef] [PubMed]
  15. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
    [CrossRef] [PubMed]
  16. I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
    [CrossRef]
  17. H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
    [CrossRef] [PubMed]
  18. ISO 11551: Test Method for Absorptance of Optical Laser Components, International Organization for Standardization, Technical Comittee (International Standard, 1997).
  19. A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
    [CrossRef]
  20. A. V. Tikhonravov, M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
    [CrossRef]
  21. J. H. Apfel, “Optical coating design with reduced electric field intensity,” Appl. Opt. 16(7), 1880–1885 (1977).
    [CrossRef] [PubMed]
  22. H. Fattahi, C. Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, “Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification,” Opt. Express 20(9), 9833–9840 (2012).
    [CrossRef] [PubMed]
  23. A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
    [CrossRef]
  24. A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, “Adaptive laser-induced damage detection,” Proc. SPIE 7504, 75041F (2009).
    [CrossRef]
  25. M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
    [CrossRef]
  26. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
    [CrossRef] [PubMed]
  27. Handbook of Ellipsometry (William Andrew, 2005).
  28. V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectron. Reliab. 41(7), 1057–1061 (2001).
    [CrossRef]

2013 (3)

M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52(7), 1368–1376 (2013).
[CrossRef] [PubMed]

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

2012 (4)

2011 (4)

2010 (3)

2009 (3)

2005 (2)

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

2001 (2)

V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectron. Reliab. 41(7), 1057–1061 (2001).
[CrossRef]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

1999 (1)

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

1988 (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

1977 (1)

Ahmad, I.

Alahmed, Z. A.

Amann, M.-C.

Andersen, T. V.

Apfel, J. H.

Apolonski, A.

Ashkenasi, D.

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Azzeer, A. M.

Baer, C. R. E.

Bauer, D.

Bernhardt, B.

Boehm, G.

Brons, J.

Carstens, H.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

Clapp, B.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Commandré, M.

Deacon, D. A. G.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Dekorsy, T.

Dolkemeyer, J.

Drazdys, R.

Drescher, M.

Duesterer, S.

Ehlers, H.

Eidam, T.

Eisenstein, G.

V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectron. Reliab. 41(7), 1057–1061 (2001).
[CrossRef]

Emaury, F.

Esser, D.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

Faatz, B.

Fattahi, H.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Feldhaus, J.

Fill, E.

Fu, X.

Gabler, T.

Gallais, L.

Golling, M.

Gottschall, T.

Graf, R.

Grasse, C.

Gu, X.

Hädrich, S.

Hanf, S.

Hänsch, T. W.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Heckl, O. H.

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Hoffmann, H. D.

Hoffmann, M.

Holzberger, S.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

Jasapara, J.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

Jensen, L.

Jupé, M.

Kalashnikov, V. L.

Karsch, S.

Kaster, J.

Kautek, W.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Keller, U.

Kicas, S.

Kienberger, R.

Killi, A.

Klingebiel, S.

Krausz, F.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

H. Fattahi, C. Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, “Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification,” Opt. Express 20(9), 9833–9840 (2012).
[CrossRef] [PubMed]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
[CrossRef] [PubMed]

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[CrossRef] [PubMed]

Krüger, J.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Limpert, J.

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Lorenz, M.

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Major, Z.

Mangote, B.

Mans, T.

Martin, S.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Mažule, L.

Melninkaitis, A.

Mende, M.

Mero, M.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Metzger, T.

Mikhelashvili, V.

V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectron. Reliab. 41(7), 1057–1061 (2001).
[CrossRef]

Mirauskas, J.

Nampoothiri, A.

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

O’Keefe, A.

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Ozawa, A.

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Pervak, V.

Poprawe, R.

Pronin, O.

Pupeza, I.

Rauschenberger, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Riedel, R.

Ristau, D.

M. Mende, S. Schrameyer, H. Ehlers, D. Ristau, L. Gallais, “Laser damage resistance of ion-beam sputtered Sc2O3/SiO2 mixture optical coatings,” Appl. Opt. 52(7), 1368–1376 (2013).
[CrossRef] [PubMed]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[CrossRef] [PubMed]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
[CrossRef] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

Rosenfeld, A.

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Rossbach, J.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Rudolph, W.

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

Russbueldt, P.

Rußbüldt, P.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

Saraceno, C. J.

Schlarb, H.

Schnitzler, C.

Schrameyer, S.

Schreiber, T.

Schriber, C.

Schulz, M.

Schwarz, A.

Seise, E.

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Sirutkaitis, V.

Skrobol, C.

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

Stoian, R.

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Südmeyer, T.

Sugita, A.

Sutter, D.

Sutter, D. H.

Tavella, F.

Teisset, C. Y.

Tolenis, T.

Trushin, S. A.

Tünnermann, A.

Udem, T.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

Wandt, C.

Weitenberg, J.

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[CrossRef] [PubMed]

Willner, A.

Wirth, C.

Zawischa, I.

Zerrad, M.

Appl. Opt. (3)

Appl. Phys. Mater. Sci. Process. (1)

A. Rosenfeld, M. Lorenz, R. Stoian, D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. Mater. Sci. Process. 69(7), S373–S376 (1999).
[CrossRef]

Microelectron. Reliab. (1)

V. Mikhelashvili, G. Eisenstein, “Optical and electrical characterization of the electron beam gun evaporated TiO2 film,” Microelectron. Reliab. 41(7), 1057–1061 (2001).
[CrossRef]

Nat. Photonics (1)

I. Pupeza, S. Holzberger, T. Eidam, H. Carstens, D. Esser, J. Weitenberg, P. Rußbüldt, J. Rauschenberger, J. Limpert, T. Udem, A. Tünnermann, T. W. Hänsch, A. Apolonski, F. Krausz, E. Fill, “Compact high-repetition-rate source of coherent 100 eV radiation,” Nat. Photonics 7(8), 608–612 (2013).
[CrossRef]

Opt. Eng. (1)

M. Mero, D. Ristau, J. Krüger, S. Martin, K. Starke, B. Clapp, J. Jasapara, W. Kautek, W. Rudolph, “On the damage behavior of dielectric films when illuminated with multiple femtosecond laser pulses,” Opt. Eng. 44(5), 051107 (2005).
[CrossRef]

Opt. Express (6)

H. Fattahi, C. Y. Teisset, O. Pronin, A. Sugita, R. Graf, V. Pervak, X. Gu, T. Metzger, Z. Major, F. Krausz, A. Apolonski, “Pump-seed synchronization for MHz repetition rate, high-power optical parametric chirped pulse amplification,” Opt. Express 20(9), 9833–9840 (2012).
[CrossRef] [PubMed]

M. Jupé, L. Jensen, A. Melninkaitis, V. Sirutkaitis, D. Ristau, “Calculations and experimental demonstration of multi-photon absorption governing fs laser-induced damage in titania,” Opt. Express 17(15), 12269–12278 (2009).
[CrossRef] [PubMed]

H. Carstens, S. Holzberger, J. Kaster, J. Weitenberg, V. Pervak, A. Apolonski, E. Fill, F. Krausz, I. Pupeza, “Large-mode enhancement cavities,” Opt. Express 21(9), 11606–11617 (2013).
[CrossRef] [PubMed]

S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S. A. Trushin, Z. Major, F. Krausz, S. Karsch, “High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers,” Opt. Express 19(6), 5357–5363 (2011).
[CrossRef] [PubMed]

C. J. Saraceno, F. Emaury, O. H. Heckl, C. R. E. Baer, M. Hoffmann, C. Schriber, M. Golling, T. Südmeyer, U. Keller, “275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment,” Opt. Express 20(21), 23535–23541 (2012).
[CrossRef] [PubMed]

D. Bauer, I. Zawischa, D. H. Sutter, A. Killi, T. Dekorsy, “Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion,” Opt. Express 20(9), 9698–9704 (2012).
[CrossRef] [PubMed]

Opt. Lett. (7)

O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V. L. Kalashnikov, A. Apolonski, F. Krausz, “High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator,” Opt. Lett. 36(24), 4746–4748 (2011).
[CrossRef] [PubMed]

T. Metzger, A. Schwarz, C. Y. Teisset, D. Sutter, A. Killi, R. Kienberger, F. Krausz, “High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification,” Opt. Lett. 34(14), 2123–2125 (2009).
[CrossRef] [PubMed]

I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z. A. Alahmed, A. M. Azzeer, A. Tünnermann, T. W. Hänsch, F. Krausz, “Power scaling of a high-repetition-rate enhancement cavity,” Opt. Lett. 35(12), 2052–2054 (2010).
[CrossRef] [PubMed]

T. Eidam, S. Hanf, E. Seise, T. V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, “Femtosecond fiber CPA system emitting 830 W average output power,” Opt. Lett. 35(2), 94–96 (2010).
[CrossRef] [PubMed]

P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, R. Poprawe, “Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier,” Opt. Lett. 35(24), 4169–4171 (2010).
[CrossRef] [PubMed]

M. Schulz, R. Riedel, A. Willner, T. Mans, C. Schnitzler, P. Russbueldt, J. Dolkemeyer, E. Seise, T. Gottschall, S. Hädrich, S. Duesterer, H. Schlarb, J. Feldhaus, J. Limpert, B. Faatz, A. Tünnermann, J. Rossbach, M. Drescher, F. Tavella, “Yb:YAG Innoslab amplifier: efficient high repetition rate subpicosecond pumping system for optical parametric chirped pulse amplification,” Opt. Lett. 36(13), 2456–2458 (2011).
[CrossRef] [PubMed]

B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, S. Kičas, T. Tolenis, R. Drazdys, “Femtosecond laser damage resistance of oxide and mixture oxide optical coatings,” Opt. Lett. 37(9), 1478–1480 (2012).
[CrossRef] [PubMed]

Phys. Rev. B (2)

J. Jasapara, A. Nampoothiri, W. Rudolph, D. Ristau, K. Starke, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B 63(4), 045117 (2001).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B Condens. Matter 53(4), 1749–1761 (1996).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. Melninkaitis, J. Mirauskas, V. Sirutkaitis, “Adaptive laser-induced damage detection,” Proc. SPIE 7504, 75041F (2009).
[CrossRef]

Rev. Sci. Instrum. (1)

A. O’Keefe, D. A. G. Deacon, “Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59(12), 2544–2551 (1988).
[CrossRef]

Other (3)

A. V. Tikhonravov, M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
[CrossRef]

Handbook of Ellipsometry (William Andrew, 2005).

ISO 11551: Test Method for Absorptance of Optical Laser Components, International Organization for Standardization, Technical Comittee (International Standard, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) and (b): Layer thickness profile of a QWOT stack of Ta2O5/SiO2 (a) and of a layer stack of Ta2O5/SiO2 with reduced electric field intensity (EFI) inside the Ta2O5 layers (b). (c) and (d): Electric field distributions inside of (a) and (b), respectively. The electric field inside L and H layers is represented accordingly by green and red sections, whereas the field in the incident medium is colored in blue.

Fig. 2
Fig. 2

Absorption and total losses of the QWOT stacks, on which damage threshold measurements were performed.

Fig. 3
Fig. 3

Measurement setup: PD – photodiode, λ/2 – half-wave plate, TFP – thin-film polarizer.

Fig. 4
Fig. 4

Scattering signal versus fluence: example damage threshold measurement. The arrow points to the fluence at which damage occurred.

Fig. 5
Fig. 5

Damage fluences of different QWOT stacks versus band gap of the respective high-index materials. The measured damage fluences of the samples do not scale linearly with the band gap (a). However, if the electric field distribution inside of the QWOT stacks is taken into account (b), the “internal” damage fluences were found to follow a linear dependence on the band gap (blue line). The green dashed line represents the corrected band gap dependence reported in [5] for single pulse measurements with 500 fs pulses at 1030 nm (see text for details). The star and the diamond mark the photon energies at 1030 nm and 515 nm, respectively.

Fig. 6
Fig. 6

Comparison of the damage threshold values of QWOT stacks employing different high-index materials with the respective narrow band-pass (NBP) filters.

Fig. 7
Fig. 7

Comparisons between a QWOT stack and an EFI stack with respect to: (a) damage threshold of compositions of different materials; (b) theoretical group delay dispersion (GDD) around the central wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F int X = | E max X / E inc | 2 F ext .
F ext =min( | E inc / E max H | 2 F int H , | E inc / E max L | 2 F int L ),
| E max H / E max L | 2 = F int H / F int L .

Metrics