Abstract

The temperature dependence of the thermo-optic effects in single crystal and ceramic TGG were evaluated by using the Fizou interferometer method. The temperature dependence of the refractive index and thermal expansion are significantly improved at low temperature for both ceramics and single crystals. Our estimation using a figure of merit indicated that a TGG ceramics cooled to liquid nitrogen temperature can reduce thermal wave-front distortion by a factor of up to 4.7 with respect to that at 300 K, and can reduce thermal birefringence effects by up to a factor of 12 with respect to those at 300 K.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
    [CrossRef] [PubMed]
  2. R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).
  3. E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE4968, 115–126 (2003).
    [CrossRef]
  4. H. Yoshida, K. Tsubakimoto, Y. Fujimoto, K. Mikami, H. Fujita, N. Miyanaga, H. Nozawa, H. Yagi, T. Yanagitani, Y. Nagata, and H. Kinoshita, “Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator,” Opt. Express19(16), 15181–15187 (2011).
    [CrossRef] [PubMed]
  5. R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett.38(10), 1751–1753 (2013).
    [CrossRef] [PubMed]
  6. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, “Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wave-front sensor,” Appl. Opt.40(3), 366–374 (2001).
    [CrossRef] [PubMed]
  7. I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CE_P12.
  8. A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
    [CrossRef]
  9. D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
    [CrossRef]
  10. D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
    [CrossRef]
  11. A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011).
    [CrossRef]
  12. D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B29(4), 786–792 (2012).
    [CrossRef]
  13. A. A. Jalali, J. Rybarsyk, and E. Rogers, “Thermal lensing analysis of TGG and its effect on beam quality,” Opt. Express21(11), 13741–13747 (2013).
    [CrossRef] [PubMed]
  14. http://www.shimadzu.com/products/opt/sk/oh80jt0000009xne.html
  15. J. D. Foster and L. M. Osterink, “Index of refraction and expansion thermal coefficients of Nd:YAG,” Appl. Opt.7(12), 2428–2429 (1968).
    [CrossRef] [PubMed]
  16. R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
    [CrossRef] [PubMed]
  17. R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012).
    [CrossRef] [PubMed]
  18. U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994).
    [CrossRef]
  19. T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
    [CrossRef]
  20. D. J. Steinberg, “The temperature independence of Grüneisen’s gamma at high temperature,” J. Appl. Phys.52(10), 6415 (1981).
    [CrossRef]
  21. G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971).
    [CrossRef]
  22. J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
    [CrossRef]
  23. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
    [CrossRef] [PubMed]
  24. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C. Hernandez-Gomez, and J. L. Collier, “High-efficiency 10 J diode pumped cryogenic gas cooled Yb:YAG multislab amplifier,” Opt. Lett.37(12), 2175–2177 (2012).
    [CrossRef] [PubMed]

2013

2012

2011

2010

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

2008

2007

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

2006

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

2005

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

2003

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE4968, 115–126 (2003).
[CrossRef]

2001

1999

1994

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994).
[CrossRef]

1981

D. J. Steinberg, “The temperature independence of Grüneisen’s gamma at high temperature,” J. Appl. Phys.52(10), 6415 (1981).
[CrossRef]

1971

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971).
[CrossRef]

1968

Aggarwal, R. L.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Banerjee, S.

Byer, R. L.

Chann, B.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Clubley, D.

Collier, J. L.

Daneu, J. L.

Eichler, H. J.

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

Ertel, K.

Fan, T. Y.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

R. Wynne, J. L. Daneu, and T. Y. Fan, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt.38(15), 3282–3284 (1999).
[CrossRef] [PubMed]

Fejer, M. M.

Foster, J. D.

Fujimoto, Y.

Fujita, H.

Furuse, H.

Gustafson, E. K.

Hennawi, J.

Hernandez-Gomez, C.

Ikegawa, T.

Iwamoto, A.

Izawa, Y.

Jalali, A. A.

Kaminskii, A. A.

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

Kan, H.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Kanabe, T.

Katin, E. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

Kawanaka, J.

Kawashima, T.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

Khazanov, E. A.

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B29(4), 786–792 (2012).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE4968, 115–126 (2003).
[CrossRef]

Kinoshita, H.

Kurita, T.

Loeser, M.

Mansell, J. D.

Mason, P. D.

Matsumoto, O.

Mikami, K.

Miyamoto, M.

Miyanaga, N.

Mukhin, I. B.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

Mukhin, L. B.

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

Nagata, Y.

Nakatsuka, M.

Nozawa, H.

Ochoa, J. R.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Oliver, D. W.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971).
[CrossRef]

Osterink, L. M.

Palashov, O. V.

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B29(4), 786–792 (2012).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

Pearce, S. J.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Phillips, P. J.

Reiche, P.

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

Reitze, D. H.

Ripin, D. J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Rogers, E.

Rybarsyk, J.

Schlarb, U.

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994).
[CrossRef]

Sekine, T.

Siebold, M.

Slack, G. A.

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971).
[CrossRef]

Spitzberg, J.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Starobor, A. V.

Steinberg, D. J.

D. J. Steinberg, “The temperature independence of Grüneisen’s gamma at high temperature,” J. Appl. Phys.52(10), 6415 (1981).
[CrossRef]

Sugg, B.

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994).
[CrossRef]

Takeuchi, Y.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Tilleman, M.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

Tokita, S.

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

Tsubakimoto, K.

Uecker, R.

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

Voitovich, A. V.

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

Wynne, R.

Yagi, H.

Yanagitani, T.

Yasuhara, R.

R. Yasuhara and H. Furuse, “Thermally induced depolarization in TGG ceramics,” Opt. Lett.38(10), 1751–1753 (2013).
[CrossRef] [PubMed]

R. Yasuhara, H. Furuse, A. Iwamoto, J. Kawanaka, and T. Yanagitani, “Evaluation of thermo-optic characteristics of cryogenically cooled Yb:YAG ceramics,” Opt. Express20(28), 29531–29539 (2012).
[CrossRef] [PubMed]

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett.33(15), 1711–1713 (2008).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Cryogenic temperature characteristics of Verdet constant on terbium gallium garnet ceramics,” Opt. Express15(18), 11255–11261 (2007).
[CrossRef] [PubMed]

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

Yoshida, A.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Yoshida, H.

Yoshida, S.

Zelenogorskii, V. V.

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

Zheleznov, D. S.

D. S. Zheleznov, A. V. Starobor, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator with a disk-shaped magneto-optical element,” J. Opt. Soc. Am. B29(4), 786–792 (2012).
[CrossRef]

A. V. Starobor, D. S. Zheleznov, O. V. Palashov, and E. A. Khazanov, “Magnetoactive media for cryogenic Faraday isolators,” J. Opt. Soc. Am. B28(6), 1409–1415 (2011).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

Appl. Opt.

IEEE J. Sel. Top. Quantum Electron.

T. Y. Fan, D. J. Ripin, R. L. Aggarwal, J. R. Ochoa, B. Chann, M. Tilleman, and J. Spitzberg, “Cryogenic Yb3+-doped solid-state lasers,” IEEE J. Sel. Top. Quantum Electron.13(3), 448–459 (2007).
[CrossRef]

J. Appl. Phys.

D. J. Steinberg, “The temperature independence of Grüneisen’s gamma at high temperature,” J. Appl. Phys.52(10), 6415 (1981).
[CrossRef]

J. Opt. Soc. Am. B

Laser Phys.

J. Kawanaka, Y. Takeuchi, A. Yoshida, S. J. Pearce, R. Yasuhara, T. Kawashima, and H. Kan, “Highly efficient cryogenically cooled Yb:YAG laser,” Laser Phys.20(5), 1079–1084 (2010).
[CrossRef]

Laser Phys. Lett.

A. A. Kaminskii, H. J. Eichler, P. Reiche, and R. Uecker, “SRS risk potential in Faraday rotator Tb3Ga5O12 crystals for high-peak power lasers,” Laser Phys. Lett.2(10), 489–492 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

G. A. Slack and D. W. Oliver, “Thermal conductivity of garnets and phonon scattering by rare-earth ions,” Phys. Rev. B4(2), 592–609 (1971).
[CrossRef]

Phys. Status Solidi B

U. Schlarb and B. Sugg, “Refractive index of terbium gallium garnet,” Phys. Status Solidi B182(2), K91–K93 (1994).
[CrossRef]

Proc. SPIE

E. A. Khazanov, “Investigation of Faraday isolator and Faraday mirror designs for multi-kilowatt power lasers,” Proc. SPIE4968, 115–126 (2003).
[CrossRef]

Quantum Electron.

D. S. Zheleznov, A. V. Voitovich, L. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Considerable reduction of thermooptical distortions in Faraday isolators cooled to 77 K,” Quantum Electron.36(4), 383–388 (2006).
[CrossRef]

D. S. Zheleznov, V. V. Zelenogorskii, E. V. Katin, I. B. Mukhin, O. V. Palashov, and E. A. Khazanov, “Cryogenic Faraday isolator,” Quantum Electron.40(3), 276–281 (2010).
[CrossRef]

Review of Laser Engineering

R. Yasuhara, S. Tokita, J. Kawanaka, T. Kawashima, H. Kan, H. Yagi, H. Nozawa, T. Yanagitani, Y. Fujimoto, H. Yoshida, and M. Nakatsuka, “Measurement of magneto-optical property and thermal conductivity on TGG ceramic for Faraday material of high-peak and high average power laser,” Review of Laser Engineering35(12), 806–810 (2007).

Other

I. Ivanov, A. Bulkanov, E. Khazanov, I. Mukhin, O. Palashov, V. Tsvetkov, and P. Popov, “Terbium gallium garnet for high average power Faraday isolators: modern aspects of growing and characterization,” in CLEO/Europe and EQEC 2009 Conference Digest (Optical Society of America, 2009), paper CE_P12.

http://www.shimadzu.com/products/opt/sk/oh80jt0000009xne.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Photographs of the diffusion-bonded TGG ceramics sample (left) and TGG single-crystal sample with <111>-orientation along the beam axis (right) for the measurement of dn/dT and α.

Fig. 2
Fig. 2

A schematic diagram of the experimental set-up for the measurement of dn/dT and α.

Fig. 3
Fig. 3

Refractive indices of TGG ceramics. The filled circles show our experimental data for TGG ceramics. The open squares show the refractive indices of the single-crystal TGG from [18]. The solid curve shows the fitted curve for the TGG ceramics obtained by using Eq. (1).

Fig. 4
Fig. 4

Temperature dependence of the thermal expansion coefficient. The filled circles show our experimental data for TGG ceramics. The open circles show our experimental data for the single-crystal TGG. The solid curve shows the fitted curve for the TGG ceramics obtained by using Eq. (4), and the dashed curve shows that for single-crystal TGG. The inverted triangle shows the measured value of α for single-crystal TGG from [6]. The open squares represent the measured values of α for single-crystal TGG from [7].

Fig. 5
Fig. 5

Temperature dependence of dn/dT. The filled circles show our experimental data for TGG ceramics. The open circles show our experimental data for the single-crystal TGG. The solid curve shows the fitted curve for the TGG ceramics obtained by using a third-order polynomial fit, and the dashed curve shows that for single-crystal TGG. The triangle shows the measured value of dn/dT for the single-crystal TGG from [6]. The squares represent the measured values of dn/dT for the single-crystal TGG from [7].

Fig. 6
Fig. 6

Temperature dependence of thermo-optic effects. The solid line shows the FOMDrod, and the dashed line shows the FOMBrod. Red colors show TGG single crystals, and blue colors show TGG ceramics. The temperature is plotted on a logarithmic scale.

Tables (3)

Tables Icon

Table 1 Refractive Indices of TGG Ceramics

Tables Icon

Table 2 dn/dT and α of TGG ceramics and single crystal

Tables Icon

Table 3 Normalized FOMDrod and FOMBrod of TGG ceramics and single crystal

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n 2 1= E d E 0 E 0 2 (hc/λ) 2 ,
α(T)= 1 3 K( T ) γ G ρ( T ) C V ( T ),
C V ( T ) ( ω k B T ) 2 exp( ω k B T ) ( exp( ω k B T )1 ) 2 ,
α(T)=A exp( B T ) T 2 ( exp( B T )1 ) 2 ,
dn dT ( T )= M 0 + M 1 T+ M 2 T 2 + M 3 T 3 .
FOM Drod = κ χ( dn dT ) ,
FOM Brod = κ χα ,

Metrics