Abstract

Zernike polynomials are an orthonormal set of scalar functions over a circular domain, and are commonly used to represent wavefront phase or surface irregularity. In optical testing, slope or curvature of a surface or wavefront is sometimes measured instead, from which the surface or wavefront map is obtained. Previously we derived an orthonormal set of vector polynomials that fit to slope measurement data and yield the surface or wavefront map represented by Zernike polynomials. Here we define a 3-element curvature vector used to represent the second derivatives of a continuous surface, and derive a set of orthonormal curvature basis functions that are written in terms of Zernike polynomials. We call the new curvature functions the C polynomials. Closed form relations for the complete basis set are provided, and we show how to determine Zernike surface coefficients from the curvature data as represented by the C polynomials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am.66, 207–211 (1976).
  2. M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), P464–468.
  3. P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).
  4. C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express15, 18014–18024 (2007).
  5. C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part II: completing the basis set,” Opt. Express16, 6586–6591 (2008).
  6. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am.70, 998–1006 (1980).
  7. G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt.35, 6162–6172 (1996).
  8. R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt.31, 6902–6907 (1992).
  9. A. Gavrielides, “Vector polynomials orthogonal to the gradient of Zernike polynomials,” Opt. Lett.7(11), 526–528 (1982).
    [CrossRef] [PubMed]
  10. R. E. Parks and D. S. Anderson, “Surface Profile Determination Using a Two-ball Spherometer,” Optical Fabrication and Testing Workshop Technical Notebook, OSA, Tucson, AZ meeting, Nov. 5–7, 1979.
  11. P. E. Glenn, “Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique,” Proc. SPIE1531, 61–64 (1992).
  12. P. E. Glenn, “Robust, sub-angstrom-level midspatial-frequency profilometry,” Proc. SPIE1333, 175 (1990).
  13. F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt.29, 1402–1403 (1990).
  14. M. Schulz, “Topography measurement by a reliable large-area curvature sensor,” Optik (Stuttg.)112, 86–90 (2001).
  15. B. C. Kim, T. Saiag, Q. Wang, J. Soons, R. S. Polvani, and U. Griesmann, “The Geometry Measuring Machine(GEMM) Project at NIST,” in Proceedings of ASPE 2004 Winter Topical Meeting on Free-Form Optics: Design, Fabrication, Metrology, Assembly, 108 (2004).
  16. B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).
  17. C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).
  18. W. Han, “New method for estimating wavefront from curvature signal by curve fitting,” Opt. Eng.34(4), 1232–1237 (1995).
  19. S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).
  20. T. M. Apostol, Linear Algebra: A First Course, with Applications to Differential Equations (John Wiley & Sons, 1997), pp. 111–114.
  21. R. Upton and B. Ellerbroek, “Gram–Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape,” Opt. Lett.29, 2840–2842 (2004).
  22. D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).
  23. J. E. Sheedy and R. F. Hardy, “The optics of occupational progressive lenses,” Optometry76(8), 432–441 (2005).

2013 (1)

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

2009 (1)

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

2008 (1)

2007 (2)

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).

C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express15, 18014–18024 (2007).

2005 (1)

J. E. Sheedy and R. F. Hardy, “The optics of occupational progressive lenses,” Optometry76(8), 432–441 (2005).

2004 (1)

2002 (1)

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

2001 (1)

M. Schulz, “Topography measurement by a reliable large-area curvature sensor,” Optik (Stuttg.)112, 86–90 (2001).

1996 (2)

S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).

G. Harbers, P. J. Kunst, and G. W. R. Leibbrandt, “Analysis of lateral shearing interferograms by use of Zernike polynomials,” Appl. Opt.35, 6162–6172 (1996).

1995 (1)

W. Han, “New method for estimating wavefront from curvature signal by curve fitting,” Opt. Eng.34(4), 1232–1237 (1995).

1992 (2)

R. G. Lane and M. Tallon, “Wave-front reconstruction using a Shack-Hartmann sensor,” Appl. Opt.31, 6902–6907 (1992).

P. E. Glenn, “Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique,” Proc. SPIE1531, 61–64 (1992).

1990 (2)

P. E. Glenn, “Robust, sub-angstrom-level midspatial-frequency profilometry,” Proc. SPIE1333, 175 (1990).

F. Roddier, “Wavefront sensing and the irradiance transport equation,” Appl. Opt.29, 1402–1403 (1990).

1982 (1)

1980 (1)

1976 (1)

Acosta, E.

S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).

Bara, S.

S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).

Burge, J. H.

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part II: completing the basis set,” Opt. Express16, 6586–6591 (2008).

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).

C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express15, 18014–18024 (2007).

Choo, B. U.

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

Ellerbroek, B.

Elstner, C.

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

Gavrielides, A.

Gerhardt, J.

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

Glenn, P. E.

P. E. Glenn, “Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique,” Proc. SPIE1531, 61–64 (1992).

P. E. Glenn, “Robust, sub-angstrom-level midspatial-frequency profilometry,” Proc. SPIE1333, 175 (1990).

Han, W.

W. Han, “New method for estimating wavefront from curvature signal by curve fitting,” Opt. Eng.34(4), 1232–1237 (1995).

Harbers, G.

Hardy, R. F.

J. E. Sheedy and R. F. Hardy, “The optics of occupational progressive lenses,” Optometry76(8), 432–441 (2005).

Kim, B. C.

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

Kim, D. W.

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

Kunst, P. J.

Kwon, M. C.

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

Lane, R. G.

Leibbrandt, G. W. R.

Mallik, P. C. V.

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).

Noll, R. J.

Oh, C. J.

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

Ríos, S.

S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).

Roddier, F.

Schulz, M.

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

M. Schulz, “Topography measurement by a reliable large-area curvature sensor,” Optik (Stuttg.)112, 86–90 (2001).

Sheedy, J. E.

J. E. Sheedy and R. F. Hardy, “The optics of occupational progressive lenses,” Optometry76(8), 432–441 (2005).

Southwell, W. H.

Tallon, M.

Thomsen-Schmidt, P.

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

Upton, R.

Weingärtner, I.

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

Yoon, I. J.

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

Zhao, C.

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part II: completing the basis set,” Opt. Express16, 6586–6591 (2008).

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).

C. Zhao and J. H. Burge, “Orthonormal vector polynomials in a unit circle, Part I: basis set derived from gradients of Zernike polynomials,” Opt. Express15, 18014–18024 (2007).

Appl. Opt. (3)

J. Opt. Soc. Am. (2)

Opt. Commun. (1)

S. Ríos, E. Acosta, and S. Bara, “Modal phase estimation from wavefront curvature sensing,” Opt. Commun.123, 453–456 (1996).

Opt. Eng. (2)

W. Han, “New method for estimating wavefront from curvature signal by curve fitting,” Opt. Eng.34(4), 1232–1237 (1995).

P. C. V. Mallik, C. Zhao, and J. H. Burge, “Measurement of a 2-meter flat using a pentaprism scanning system,” Opt. Eng.46, 023602 (2007).

Opt. Express (2)

Opt. Lett. (2)

Optik (Stuttg.) (2)

M. Schulz, “Topography measurement by a reliable large-area curvature sensor,” Optik (Stuttg.)112, 86–90 (2001).

C. Elstner, J. Gerhardt, P. Thomsen-Schmidt, M. Schulz, and I. Weingärtner, “Reconstructing surface profiles from curvature measurements,” Optik (Stuttg.)113, 154–158 (2002).

Optometry (1)

J. E. Sheedy and R. F. Hardy, “The optics of occupational progressive lenses,” Optometry76(8), 432–441 (2005).

Proc. SPIE (4)

P. E. Glenn, “Lambda-over-one-thousand metrology results for steep aspheres using a curvature profiling technique,” Proc. SPIE1531, 61–64 (1992).

P. E. Glenn, “Robust, sub-angstrom-level midspatial-frequency profilometry,” Proc. SPIE1333, 175 (1990).

D. W. Kim, B. C. Kim, C. Zhao, C. J. Oh, and J. H. Burge, “Algorithms for surface reconstruction from curvature data for freeform aspherics,” Proc. SPIE8838, 88380B (2013).

B. C. Kim, M. C. Kwon, B. U. Choo, and I. J. Yoon, “3-D Shape easurement Using Curvature Data,” Proc. SPIE7389, 73892H (2009).

Other (4)

M. Born and E. Wolf, Principles of Optics (Pergamon Press, 1980), P464–468.

B. C. Kim, T. Saiag, Q. Wang, J. Soons, R. S. Polvani, and U. Griesmann, “The Geometry Measuring Machine(GEMM) Project at NIST,” in Proceedings of ASPE 2004 Winter Topical Meeting on Free-Form Optics: Design, Fabrication, Metrology, Assembly, 108 (2004).

T. M. Apostol, Linear Algebra: A First Course, with Applications to Differential Equations (John Wiley & Sons, 1997), pp. 111–114.

R. E. Parks and D. S. Anderson, “Surface Profile Determination Using a Two-ball Spherometer,” Optical Fabrication and Testing Workshop Technical Notebook, OSA, Tucson, AZ meeting, Nov. 5–7, 1979.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Illustration of an interferometer measuring a spherical surface. What is measured is the surface deviation from a sphere along the normal direction, not the absolute sag.

Tables (6)

Tables Icon

Table 1 Curvatures of Zernike polynomials: ZCj = CURV(Zj)

Tables Icon

Table 2 List of the inner products of the first 13 Zernike curvatures excluding the trivial terms

Tables Icon

Table 3 List of first 33 orthonormal curvature polynomials Cj as functions of curvatures of Zernike polynomials.

Tables Icon

Table 4 Summary of the recursion relations between the C polynomials and the Zernike polynomials.

Tables Icon

Table 5 List of the first 15 terms of the non-trivial C polynomials written in terms of the combinations of Zernike polynomials.

Tables Icon

Table 6 List of ZC terms for calculating C226 and the calculated C226 expressed in Zernike polynomials.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

j=226
c( x ) d 2 z d x 2
c( x,y )=( 1 2 ( d 2 z d x 2 + d 2 z d y 2 ) d 2 z dxdy 1 2 ( d 2 z d x 2 d 2 z d y 2 ) )=( c 1 c 2 c 3 )
CURV=( 1 2 ( d 2 d x 2 + d 2 d y 2 ) d 2 dxdy 1 2 ( d 2 d x 2 d 2 d y 2 ) )
Z even j = n+1 R n m (r) 2 cos(mθ) Z odd j = n+1 R n m (r) 2 sin(mθ) } m0 Z j = n+1 R n 0 (r), m=0
R n m (r)= s=0 (nm)/2 (1) s (ns)! s![(n+m)/2s]![(nm)/2s]! r n2s
Z C j =CURV( Z j )=( 1 2 2 x 2 + 1 2 2 y 2 2 xy 1 2 2 x 2 1 2 2 y 2 ) Z j ( x,y )
A B= 1 π ( A 1 B 1 + A 2 B 2 + A 3 B 3 )dxdy
C j( n,m ) = 1 k2( n 4 n 2 ) ( Z C j( n,m ) 4( n 2 1 ) ( n2 ) 2 Z C j'( n2,m ) + n 2 ( n+1 ) ( n2 ) 2 ( n3 ) Z C j"( n4,m ) )
C 226 = 1 4319200 ( Z C 226 1596 324 Z C 188 + 8400 5508 Z C 152 )
ϕ j( n,m ) = 1 k2( n 4 n 2 ) ( Z j( n,m ) 4( n 2 1 ) ( n2 ) 2 Z j'( n2,m ) + n 2 ( n+1 ) ( n2 ) 2 ( n3 ) Z j"( n4,m ) )
K( x,y )= α j C j ( x,y )
Φ( x,y )= α j ϕ j ( x,y )
Φ( x,y )= α j ϕ j ( x,y )= γ j Z j ( x,y )
γ j( n,m ) = α j( n,m ) k 1 2( n 4 n 2 ) 2 α j ( n+2,m ) k 2 2 n 2 ( n+2 ) 2 + α j ( n+4,m ) k 3 2( n+1 ) ( n+2 ) 2 ( n+3 )

Metrics