Abstract

We report on a dual output all-PM fiber laser system running at 100 MHz repetition rate offering coherent broadband and narrowband pulses centered at 2.05 µm with a spectral FWHM bandwidth of 60 nm and 1.5 nm at up to 360 mW and 500 mW, respectively. The broadband pulses are compressed down to 135 fs. The multi-stage double-clad amplifier based on Tm/Ho codoping is seeded by a supercontinuum light source, spanning from around 1 µm up to 2.4 µm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 μm Laser Sources and Their Possible Applications, (Intech, 2010), Chap. 21.
  2. A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE8599, 85990B (2013).
  3. A. Dergachev, D. Armstrong, A. Smith, T. Drake, and M. Dubois, “3.4-mum ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-mum Ho:YLF MOPA system,” Opt. Express15(22), 14404–14413 (2007).
    [CrossRef] [PubMed]
  4. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, “Ultrafast thulium-doped fiber-oscillator with pulse energy of 4.3 nJ,” Opt. Lett.33(7), 690–692 (2008).
    [CrossRef] [PubMed]
  5. J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” in CLEO Symposium on Broadband Spectroscopy: New Techniques and Sources III: Sources, Baltimore, MD (Optical Society of America, 2011), paper CThBB5.
    [CrossRef]
  6. A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
    [CrossRef]
  7. A. Chamorovskiy, A. V. Marakulin, S. Ranta, M. Tavast, J. Rautiainen, T. Leinonen, A. S. Kurkov, and O. G. Okhotnikov, “Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser,” Opt. Lett.37(9), 1448–1450 (2012).
    [CrossRef] [PubMed]
  8. S. Kumkar, G. Krauss, M. Wunram, D. Fehrenbacher, U. Demirbas, D. Brida, and A. Leitenstorfer, “Femtosecond coherent seeding of a broadband Tm:fiber amplifier by an Er:fiber system,” Opt. Lett.37(4), 554–556 (2012).
    [CrossRef] [PubMed]
  9. F. Adler and S. A. Diddams, “High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region,” Opt. Lett.37(9), 1400–1402 (2012).
    [CrossRef] [PubMed]
  10. N. Coluccelli, M. Cassinerio, G. Galzerano and P. Laporta, “Raman soliton amplification by Tm-Ho:fiber for high-effciencyWatt-level ultrashort pulses in the range 1.8-1.92 um,” in CLEO conference Europe (2013), CJ-9.5.
  11. A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
    [CrossRef]
  12. A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
    [CrossRef]
  13. Y. Kim, Y.-J. Kim, S. Kim, and S.-W. Kim, “Er-doped fiber comb with enhanced fceo S/N ratio using Tm:Ho-doped fiber,” Opt. Express17(21), 18606–18611 (2009).
    [CrossRef] [PubMed]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
    [CrossRef]
  15. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express20(3), 2851–2857 (2012).
    [CrossRef] [PubMed]
  16. O. E. Martinez, J. P. Gordon, and R. L. Fork, “Negative group-velocity dispersion using refraction,” J. Opt. Soc. Am. A1(10), 1003–1006 (1984).
    [CrossRef]

2013 (1)

A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE8599, 85990B (2013).

2012 (5)

2011 (1)

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

2003 (1)

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

1984 (1)

Adler, F.

Armstrong, D.

Baev, V. M.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Bang, O.

Brida, D.

Chamorovskiy, A.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Correia, L.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Demirbas, U.

Dergachev, A.

Diddams, S. A.

Drake, T.

Dubois, M.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Engelbrecht, M.

Fehrenbacher, D.

Fork, R. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Gordon, J. P.

Haxsen, F.

Jakobsen, C.

Johansen, J.

Kamynin, V. A.

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kracht, D.

Krauss, G.

Kumkar, S.

Kurkov, A. S.

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

A. Chamorovskiy, A. V. Marakulin, S. Ranta, M. Tavast, J. Rautiainen, T. Leinonen, A. S. Kurkov, and O. G. Okhotnikov, “Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser,” Opt. Lett.37(9), 1448–1450 (2012).
[CrossRef] [PubMed]

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

Larsen, C.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Leinonen, T.

Leitenstorfer, A.

Marakulin, A. V.

A. Chamorovskiy, A. V. Marakulin, S. Ranta, M. Tavast, J. Rautiainen, T. Leinonen, A. S. Kurkov, and O. G. Okhotnikov, “Femtosecond mode-locked holmium fiber laser pumped by semiconductor disk laser,” Opt. Lett.37(9), 1448–1450 (2012).
[CrossRef] [PubMed]

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

Martinez, O. E.

Minashina, L. A.

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

Møller, U.

Moselund, P. M.

Okhotnikov, O. G.

Ranta, S.

Rautiainen, J.

Ruehl, A.

Sadovnikova, Ya. E.

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

Salewski, S.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Sholokhov, E. M.

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

Smith, A.

Sørensen, S. T.

Stark, A.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Tavast, M.

Teichmann, M.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Thomsen, C. L.

Toschek, P. E.

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Tsvetkov, V. B.

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

Wandt, D.

Wunram, M.

J. Opt. Soc. Am. A (1)

Laser Phys. Lett. (1)

A. S. Kurkov, V. A. Kamynin, E. M. Sholokhov, and A. V. Marakulin, “Mid-IR supercontinuum generation in Ho-doped fiber amplifier,” Laser Phys. Lett.8(10), 754–757 (2011).
[CrossRef]

Opt. Commun. (1)

A. Stark, L. Correia, M. Teichmann, S. Salewski, C. Larsen, V. M. Baev, and P. E. Toschek, “Intracavity absorption spectroscopy with thulium-doped fibre laser,” Opt. Commun.215(1–3), 113–123 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (1)

A. Dergachev, “High-energy, kHz-rate, picosecond, 2-μm laser pump source for mid-IR nonlinear optical devices,” Proc. SPIE8599, 85990B (2013).

Quantum Electron. (1)

A. S. Kurkov, V. A. Kamynin, V. B. Tsvetkov, Ya. E. Sadovnikova, A. V. Marakulin, and L. A. Minashina, “Supercontinuum generation in thulium-doped fibres,” Quantum Electron.42(9), 778–780 (2012).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006).
[CrossRef]

Other (3)

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, 2 μm Laser Sources and Their Possible Applications, (Intech, 2010), Chap. 21.

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” in CLEO Symposium on Broadband Spectroscopy: New Techniques and Sources III: Sources, Baltimore, MD (Optical Society of America, 2011), paper CThBB5.
[CrossRef]

N. Coluccelli, M. Cassinerio, G. Galzerano and P. Laporta, “Raman soliton amplification by Tm-Ho:fiber for high-effciencyWatt-level ultrashort pulses in the range 1.8-1.92 um,” in CLEO conference Europe (2013), CJ-9.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic setup of the multi-stage 2.05 µm amplifier system; HNLF: highly nonlinear fiber, FS: fiber stretcher.

Fig. 2
Fig. 2

(a) Output spectrum of the pulses behind single stage preliminary Tm/Ho amplifier; (b) preliminary investigation on the optical output spectrum when tuning the temperature of the amplifiers gain fiber between 25°C and 15°C.

Fig. 3
Fig. 3

Output spectrum of NB port at 500 mW average output power.

Fig. 4
Fig. 4

RIN measurement of the broadband pulses depicting RIN, integrated RIN and integrated noisefloor of the pulses on the output of the broadband channel (a) and of the SC seed on the output of the HNLF (b).

Fig. 5
Fig. 5

RF spectrum of the phaselocked beat signal with a SNR of 32 dB.

Fig. 6
Fig. 6

(a) Setup of the Martinez style compressor unit, based on Al-coated grating and convex mirror with a focal length of 30 cm; (b) output spectrum and phase of the BB pulses on the output of the compressor measured by SH-FROG; (c) FROG resolved pulse duration and instantaneous frequency over the pulse (inset: measured FROG trace).

Metrics