Abstract

We investigate, by simulations and experiments, the light scattering of small particles trapped in photonic crystal membranes supporting guided resonance modes. Our results show that, due to amplified Rayleigh small particle scattering, such membranes can be utilized to make a sensor that can detect single nano-particles. We have designed a biomolecule sensor that uses cross-polarized excitation and detection for increased sensitivity. Estimated using Rayleigh scattering theory and simulation results, the current fabricated sensor has a detection limit of 26 nm, corresponding to the size of a single virus. The sensor can potentially be made both cheap and compact, to facilitate use at point-of-care.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010).
    [PubMed]
  2. M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
    [CrossRef] [PubMed]
  3. M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
    [CrossRef]
  4. D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013).
    [CrossRef]
  5. F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).
  6. R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
    [CrossRef]
  7. D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
    [CrossRef]
  8. M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20, 245–255 (2012).
    [CrossRef] [PubMed]
  9. V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
    [CrossRef]
  10. S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
    [PubMed]
  11. I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
    [CrossRef] [PubMed]
  12. P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
    [CrossRef] [PubMed]
  13. R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013).
    [PubMed]
  14. A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012).
    [CrossRef] [PubMed]
  15. A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
    [CrossRef]
  16. M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010).
    [CrossRef] [PubMed]
  17. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
    [CrossRef] [PubMed]
  18. C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
    [CrossRef] [PubMed]
  19. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
    [CrossRef]
  20. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express12, 1575–1582 (2004).
    [CrossRef] [PubMed]
  21. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82, 1999–2001 (2003).
    [CrossRef]
  22. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29, 2782–2784 (2004).
    [CrossRef] [PubMed]
  23. M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
    [CrossRef]
  24. J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.
  25. J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
    [CrossRef] [PubMed]
  26. Commercially available software, OptiFDTD 9.0, supplied by Optiwave, http://optiwave.com/ , visited 25 Oct. 2013.
  27. Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html , visited 25 Oct. 2013.
  28. J.-P. Berenger, “Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
    [CrossRef]
  29. J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
    [CrossRef] [PubMed]
  30. C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley, 1998), Chap. 5.
    [CrossRef]
  31. J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
    [CrossRef]

2013 (7)

D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013).
[CrossRef]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013).
[PubMed]

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

2012 (7)

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

M. Mancuso, J. M. Goddard, and D. Erickson, “Nanoporous polymer ring resonators for biosensing,” Opt. Express20, 245–255 (2012).
[CrossRef] [PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012).
[CrossRef] [PubMed]

S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
[PubMed]

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).

2011 (1)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

2010 (3)

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010).
[PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

M. E. Beheiry, V. Liu, S. Fan, and O. Levi, “Sensitivity enhancement in photonic crystal slab biosensors,” Opt. Express18, 22702–22714 (2010).
[CrossRef] [PubMed]

2009 (2)

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
[CrossRef]

2004 (3)

2003 (1)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82, 1999–2001 (2003).
[CrossRef]

2002 (2)

J.-P. Berenger, “Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

Adato, R.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013).
[PubMed]

Ahmed, M. U.

M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
[CrossRef] [PubMed]

Altug, H.

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013).
[PubMed]

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
[CrossRef]

Ament, I.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Arnold, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Artar, A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

Barbre, C.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Beheiry, M. E.

Berenger, J.-P.

J.-P. Berenger, “Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley, 1998), Chap. 5.
[CrossRef]

Bohunicky, B.

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010).
[PubMed]

Brown, A. S.

M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
[CrossRef] [PubMed]

Bruck, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

Cetin, A. E.

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012).
[CrossRef] [PubMed]

Chan, L. L.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Chang, T. Y.

Choi, C. J.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Connor, J. H.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

Cunningham, B. T.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Dante, S.

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

Dantham, V. R.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Dominguez, C.

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

Duval, D.

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013).
[CrossRef]

Eden, J. G.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Erickson, D.

Fan, S.

Fauchet, P. M.

S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
[PubMed]

Flood, T. A.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Ge, C.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Geisbert, T. W.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

George, S.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Goddard, J. M.

Grepstad, J. O.

J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.

Greve, M.

J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

Hainberger, R.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

Henkel, A.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Hergenrother, P. J.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Holler, S.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Holst, B.

J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley, 1998), Chap. 5.
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

Johansen, I.-R.

Kamohara, O.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

Kaspar, P.

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. S. Sudbø, “Photonic-crystal membranes for optical detection of single nano-particles, designed for biosensor application,” Opt. Express20, 7954–7965 (2012).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.

Keng, D.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Kilic, O.

Kim, S.

Kolchenko, V.

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Kuhlenschmidt, M.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Kuhlenschmidt, T.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Lammerhofer, M.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

Lechuga, L.

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

Lechuga, L. M.

D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013).
[CrossRef]

Levi, O.

Liu, V.

Lousse, V.

Lu, M.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Mancuso, M.

Melnik, E.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

Miller, B. L.

S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
[PubMed]

Mousa, S. A.

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010).
[PubMed]

Muellner, P.

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

Orrit, M.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Osmond, J.

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

Pal, S.

S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
[PubMed]

Paulo, P. M. R.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Peter, Y.-A.

Pineda, M. F.

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

Pokhriyal, A.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Prasad, J.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Reisinger, T.

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

Saaem, I.

M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
[CrossRef] [PubMed]

Schmachtel, S.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Solgaard, O.

Sonnichsen, C.

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

Sudbo, A.

J. O. Grepstad, M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbo, “Finite-size limitations on quality factor of guided resonance modes in 2d photonic crystals,” Opt. Express21, 23640–23654 (2013).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.

Sudbø, A. S.

Suh, W.

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).

Voros, J.

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
[CrossRef] [PubMed]

Wagner, C.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Wu, P. C.

M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
[CrossRef] [PubMed]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).

Yanik, A. A.

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

M. Huang, A. A. Yanik, T. Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Opt. Express17, 24224–24233 (2009).
[CrossRef]

Yanik, M. F.

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett.29, 2782–2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82, 1999–2001 (2003).
[CrossRef]

Zheng, J.

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

ACS Nano (1)

A. E. Cetin and H. Altug, “Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing,” ACS Nano6, 9989–9995 (2012).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. Pal, P. M. Fauchet, and B. L. Miller, “1-d and 2-d photonic crystals as optical methods for amplifying biomolecular recognition,” Anal. Chem.84, 8900–8908 (2012).
[PubMed]

Appl. Phys. Lett. (1)

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett.82, 1999–2001 (2003).
[CrossRef]

Biophys. J. (1)

J. Voros, “The density and refractive index of adsorbing protein layers,” Biophys. J.87, 553–561 (2004).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

R. Bruck, E. Melnik, P. Muellner, R. Hainberger, and M. Lammerhofer, “Integrated polymer-based mach-zehnder interferometer label-free streptavidin biosensor compatible with injection molding,” Biosens. Bioelectron.26, 3832–3837 (2011).
[CrossRef]

IEEE Photonics J. (2)

D. Duval, J. Osmond, S. Dante, C. Dominguez, and L. Lechuga, “Grating couplers integrated on mach-zehnder interferometric biosensors operating in the visible range,” IEEE Photonics J.5, 3700108 (2013).
[CrossRef]

D. Duval and L. M. Lechuga, “Breakthroughs in photonics 2012: 2012 breakthroughs in lab-on-a-chip and optical biosensors,” IEEE Photonics J.5, 0700906 (2013).
[CrossRef]

IEEE Sens. J. (1)

M. F. Pineda, L. L. Chan, T. Kuhlenschmidt, C. J. Choi, M. Kuhlenschmidt, and B. T. Cunningham, “Rapid specific and label-free detection of porcine rotavirus using photonic crystal biosensors,” IEEE Sens. J.9, 470–477 (2009).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

J.-P. Berenger, “Numerical reflection from FDTD-PMLs: a comparison of the split PML with the unsplit and CFS PMLs,” IEEE Trans. Antennas Propag.50, 258–265 (2002).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. O. Grepstad, M. Greve, T. Reisinger, and B. Holst, “Nano-structuring on free-standing, dielectric membranes using e-beam lithography,” J. Vac. Sci. Technol. B31, 06F402 (2013).
[CrossRef]

Lab Chip (1)

C. Ge, M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, “External cavity laser biosensor,” Lab Chip13, 1247–1256 (2013).
[CrossRef] [PubMed]

Nano Lett. (3)

I. Ament, J. Prasad, A. Henkel, S. Schmachtel, and C. Sonnichsen, “Single unlabeled protein detection on individual plasmonic nanoparticles,” Nano Lett.12, 1092–1095 (2012).
[CrossRef] [PubMed]

A. A. Yanik, M. Huang, O. Kamohara, A. Artar, T. W. Geisbert, J. H. Connor, and H. Altug, “An optofluidic nanoplasmonic biosensor for direct detection of live viruses from biological media,” Nano Lett.10, 4962–4969 (2010).
[CrossRef]

V. R. Dantham, S. Holler, C. Barbre, D. Keng, V. Kolchenko, and S. Arnold, “Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity,” Nano Lett.13, 3347–3351 (2013).
[CrossRef]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics37, 267–291 (2012).

Nanotechnol. Sci. Appl. (1)

B. Bohunicky and S. A. Mousa, “Biosensors: the new wave in cancer diagnosis,” Nanotechnol. Sci. Appl.4, 1–10 (2010).
[PubMed]

Nat. Commun. (1)

R. Adato and H. Altug, “In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas,” Nat. Commun.4, 2154 (2013).
[PubMed]

Nat. Nanotechnol. (1)

P. Zijlstra, P. M. R. Paulo, and M. Orrit, “Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod,” Nat. Nanotechnol.7, 379–382 (2012).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B65, 235112 (2002).
[CrossRef]

Other (5)

M. U. Ahmed, I. Saaem, P. C. Wu, and A. S. Brown, “Personalized diagnostics and biosensors: a review of the biology and technology needed for personalized medicine,” Crit. Rev. Biotechnol. (2013).
[CrossRef] [PubMed]

J. O. Grepstad, P. Kaspar, O. Solgaard, I.-R. Johansen, and A. Sudbo, “Optical imaging system designed for biosensing using a photonic crystal membrane to detect nanoparticles,” in Imaging and Applied Optics Technical Papers (Optical Society of America, 2012), pp. IM4C.2.

Commercially available software, OptiFDTD 9.0, supplied by Optiwave, http://optiwave.com/ , visited 25 Oct. 2013.

Commercially available software supplied by KJ Innovation, http://software.kjinnovation.com/GD-Calc.html , visited 25 Oct. 2013.

C. F. Bohren and D. R. Huffman, Absorbtion and Scattering of Light by Small Particles (John Wiley, 1998), Chap. 5.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Images acquired using a scanning electron microscope (SEM) of the front side (a) and backside (b) of a fabricated sample of the photonic crystal. An area of the image showing a particle with a radius of 60±15 nm has been enlarged. The particle is a defect in the lattice. (c) An image of the crystal, front side facing up, has been recorded using an optical setup [24] with monochromatic illumination at 632 nm, normally incident from the backside. The color scale gives the transmittance of the membrane. (d) Optical setup with a collimated narrowband light source centered at 632 nm, emitting a beam directed by a 45° aluminum mirror to the backside of a photonic crystal at normal incidence, via a linear polarizer, Ls. Transmitted light is collected by a 50x/0.95 NA objective lens, passes through a linear polarizer, Ld, and is recorded by a 2D CCD camera. The image displayed in (c) is recorded with the optical setup in (d), not using polarizers Ls and Ld.

Fig. 2
Fig. 2

Results from RCWA simulations. (a) Unit cell of a 2D photonic crystal membrane, and (b) the simulated transmittance of the crystal for normal incidence y-polarized light as a function of wavelength. (c) Color image representations of the resonantly enhanced field at the center plane, z = 0, is given for the dip at 631 nm. The bottom color scale gives the field amplitude, relative to the amplitude of the incident field.

Fig. 3
Fig. 3

(Left) Illustration of the FDTD simulation domain, composed of a volume of air, with refractive index set to nair = 1, measuring 15×15×4 periods, where the period p = 500 nm. All simulation boundaries are terminated with absorbing layers of the perfectly matched type (PML). A plane incident wave, truncated at the simulation boundaries, is imposed at z = 0.5p, traveling in the positive z-direction, and a photonic crystal membrane with thickness t = 160 nm is centered at z = p, aligned with the xy-plane. The field is recorded as a function of time at the observation point T, and the terminal field distribution is recorded at the xy-plane at z = p. (Right) Drawing of the unit cell in the photonic crystal. The period is p, and the radius of the hole is r = 145 nm. The membrane material has a refractive index set to nmemb = 2, corresponding to Si3N4.

Fig. 4
Fig. 4

Color image representations of fields resulting from continuous wave FDTD simulations of a pristine photonic crystal, illuminated with normal incidence y-polarized light at a wavelength of 703.6 nm, without a particle in the lattice (row 1), and photonic crystals with a particle inserted at three selected lateral positions in the center hole: Center (row 2), off-centered in the x-direction (row 3), and off-centered in the y-direction (row 4). The first three columns show the absolute value of the field components Ex, Ey, and Ez, respectively. Illustrations in the fourth column, corresponds to the areas in-plane over which the field has been plotted. The color scales represent the amplitude (absolute value) of each of the three components of the E-vector, divided by the amplitude of the E-vector of the incident plane wave.

Fig. 5
Fig. 5

Color image representations of absolute values of changes in the complex-valued field components Ex, Ey and Ez, at the center plane of a pristine photonic crystal, caused by inserting a particle in the crystal. The photonic crystal is illuminated with normally incident y-polarized light at a wavelength of 703.6 nm. Three selected lateral positions of the particle in the center hole have been investigated: Center (row 1), off-centered in the x-direction (row 2), and off-centered in the y-direction (row 3). Illustrations to the far left correspond to the areas in-plane over which the field has been plotted. The change has been calculated by subtracting the field distribution for a pristine photonic crystal shown in Fig. 4 (top row), from the field distribution in a photonic crystal with a particle trapped in the lattice, Fig. 4 (row 2–4). The plotted fields hence correspond directly to the E-field scattered by the particles. The color scales represent the absolute value of the change in of each of the three components of the E-vector, divided by the amplitude of the E-vector of the incident plane wave.

Fig. 6
Fig. 6

(a) Color image representation of the y component of the field at the center plane of a pristine photonic crystal illuminated with normal incidence y-polarized light at a wavelength of 703.6 nm, caused by inserting a particle in the center hole of the crystal. Three different particle sizes have been simulated, as shown in the three illustrations at the top. (b) Line plot crossing the field plots in (a) in the x-direction at y = 0. The color scale in (a) and the abscissa in (b) both represent the absolute value of the change in Ey divided by the amplitude of the incident plane waves.

Fig. 7
Fig. 7

Images recorded with the optical setup illustrated in Fig. 1(d). (a and b) Results are collected for four orientations of polarizer Ls, with polarizer Ld (a) not employed and (b) oriented orthogonal to Ls. Arrows drawn on-top of a 3×3 hole matrix show the orientation of Ls and Ld relative to the lattice, for each recording. A set of pixels D, corresponding to the position of defect A has been enlarged, for every recording. The color scales located at the bottom of column (a) and (b) show the transmittance of the membrane, calculated by dividing the pixel values resulting from a recording of the membrane, by the mean pixel value in a recording without the membrane in the light path. (c) Line plots of pixel values, going from point A to B, crossing the crystal in the y-direction, intersecting the peak in pixel value in pixels D. The ordinate in the plots in (c) represents optical power per pixel, computed by dividing each bit-value in the picture file by the exposure time.

Metrics