Abstract

Photo-reactive self-assembled monolayer (PR-SAM) is employed to mediate alignment of liquid crystals (LC) and stabilize the tilt orientation of a nematic director for a vertically aligned liquid crystal. Bifunctional PR-SAM formed by silane coupling reaction to oxide surfaces efficiently induces a homeotropic alignment and stabilizes LC director by the photo-polymerization under applied electric field. As a result, the substantial enhancement of electro-optic performance has been achieved after the PR-SAM assisted stabilization of tilt orientation of director. This approach for pretilt stabilization has multifarious advantages over the conventional PSVA.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
    [CrossRef] [PubMed]
  2. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
    [CrossRef] [PubMed]
  3. S. M. Malone and D. K. Schwartz, “Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: Effects of chain-length and mechanical rubbing,” Langmuir24(17), 9790–9794 (2008).
    [CrossRef] [PubMed]
  4. A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).
  5. B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
    [CrossRef]
  6. P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem.15(3), 381–385 (2005).
    [CrossRef]
  7. D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
    [CrossRef]
  8. S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
    [CrossRef]
  9. O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
    [CrossRef]
  10. L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
    [CrossRef]
  11. K. Y. Kim and J.-K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater.1(1), 29–36 (2009).
    [CrossRef]
  12. S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
    [CrossRef] [PubMed]
  13. S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
    [CrossRef]
  14. L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
    [CrossRef] [PubMed]
  15. K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).
  16. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
    [CrossRef]

2013 (1)

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

2012 (1)

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

2009 (2)

S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

K. Y. Kim and J.-K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater.1(1), 29–36 (2009).
[CrossRef]

2008 (1)

S. M. Malone and D. K. Schwartz, “Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: Effects of chain-length and mechanical rubbing,” Langmuir24(17), 9790–9794 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

2005 (2)

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem.15(3), 381–385 (2005).
[CrossRef]

2004 (1)

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

2001 (1)

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

2000 (1)

B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
[CrossRef]

1998 (1)

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

1997 (1)

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

1996 (1)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

Bos, P. J.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Chigrinov, V.

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Chinn, J.

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Dixit, V.

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Dolgov, L.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Estroff, L. A.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

Gr├╝eneberg, K.

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

Hamelinck, P. J.

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem.15(3), 381–385 (2005).
[CrossRef]

Hanaoka, K.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

Huck, W. T. S.

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem.15(3), 381–385 (2005).
[CrossRef]

Inoue, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

Jain, S. C.

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Johannsmann, D.

B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
[CrossRef]

Kang, S.-W.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

Kim, J.-H.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Kim, K. H.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, K. Y.

K. Y. Kim and J.-K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater.1(1), 29–36 (2009).
[CrossRef]

Kim, S. G.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, S. M.

S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kim, Y. S.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Kobrin, B.

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Koike, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

Kriebel, J. K.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

Kundu, S.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

Kwon, S. B.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Lee, C.-D.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Lee, G.-D.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Lee, H. K.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Lee, M.-H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

Lee, S. H.

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Li, X.

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Love, J. C.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

Lu, L.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Lyu, J.-J.

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Malone, S. M.

S. M. Malone and D. K. Schwartz, “Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: Effects of chain-length and mechanical rubbing,” Langmuir24(17), 9790–9794 (2008).
[CrossRef] [PubMed]

Murauski, A.

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Naciri, J.

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

Nakanishi, Y.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

Nuzzo, R. G.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

Paskal, L.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Pelzl, G.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Peng, B.

B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
[CrossRef]

Pirwitz, G.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Reznikov, Y.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Ruhe, J.

B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
[CrossRef]

Samanta, S. B.

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Savchuk, O.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Schwartz, D. K.

S. M. Malone and D. K. Schwartz, “Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: Effects of chain-length and mechanical rubbing,” Langmuir24(17), 9790–9794 (2008).
[CrossRef] [PubMed]

Sergan, V.

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

Shashidhar, R.

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

Shenoy, D.

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

Song, J.-K.

K. Y. Kim and J.-K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater.1(1), 29–36 (2009).
[CrossRef]

Syromyatnikov, V.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Tanuma, S.

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

Tanwar, V. K.

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Ulman, A.

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

Verma, S. P.

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Vretik, L.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Whitesides, G. M.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

Wu, S.-T.

S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

Yaroshchuk, O.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Zagniy, V.

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

Zaschke, H.

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Adv. Mater. (2)

S. Kundu, M.-H. Lee, S. H. Lee, and S.-W. Kang, “In situ homeotropic alignment of nematic liquid crystals based on photoisomerization of azo-dye, physical adsorption of aggregates, and consequent topographical modification,” Adv. Mater.25(24), 3365–3370 (2013).
[CrossRef] [PubMed]

B. Peng, J. Ruhe, and D. Johannsmann, “Homogeneously aligned liquid-crystal polymer brushes,” Adv. Mater.12(11), 821–824 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, S. H. Lee, G.-D. Lee, J.-J. Lyu, and K. H. Kim, “Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen,” Appl. Phys. Lett.90(26), 261910 (2007).
[CrossRef]

Appl. Surf. Sci. (1)

S. C. Jain, V. K. Tanwar, V. Dixit, S. P. Verma, and S. B. Samanta, “Surface order and structure studies of polymer-solid interface,” Appl. Surf. Sci.182(3-4), 350–356 (2001).
[CrossRef]

Chem. Rev. (2)

A. Ulman, “Formation and structure of self-assembled monolayers,” Chem. Rev.96(4), 1533–1554 (1996).
[CrossRef] [PubMed]

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-assembled monolayers of thiolates on metals as a form of nanotechnology,” Chem. Rev.105(4), 1103–1169 (2005).
[CrossRef] [PubMed]

J. Mater. Chem. (1)

P. J. Hamelinck and W. T. S. Huck, “Homeotropic alignment on surface-initiated liquid crystalline polymer brushes,” J. Mater. Chem.15(3), 381–385 (2005).
[CrossRef]

J. Soc. Inf. Disp. (1)

S. H. Lee, S. M. Kim, and S.-T. Wu, “Emerging vertical-alignment liquid-crystal technology associated with surface modification using UV-curable monomer,” J. Soc. Inf. Disp.17(7), 551–559 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (2)

D. Shenoy, K. Grüeneberg, J. Naciri, and R. Shashidhar, “Photo-dimerized monolayer (PDML) versus rubbed polyimide (RPI): A comparison of electro-optic properties,” Jpn. J. Appl. Phys.37(11A), L1326–L1329 (1998).
[CrossRef]

O. Yaroshchuk, G. Pelzl, G. Pirwitz, Y. Reznikov, H. Zaschke, J.-H. Kim, and S. B. Kwon, “Photosensitive materials on a base of polysiloxane for the alignment of nematic liquid crystals,” Jpn. J. Appl. Phys.36(9A), 5693–5695 (1997).
[CrossRef]

Langmuir (1)

S. M. Malone and D. K. Schwartz, “Polar and azimuthal alignment of a nematic liquid crystal by alkylsilane self-assembled monolayers: Effects of chain-length and mechanical rubbing,” Langmuir24(17), 9790–9794 (2008).
[CrossRef] [PubMed]

Mol. Cryst. Liq. Cryst. (1)

L. Vretik, L. Paskal, V. Syromyatnikov, V. Zagniy, O. Savchuk, L. Dolgov, O. Yaroshchuk, and C.-D. Lee, “New photoalignment materials in LCD's development: Liquid crystal pretilt angle variations by using fluoroalkylmethacrylates,” Mol. Cryst. Liq. Cryst.468(1), 173–179 (2007).
[CrossRef]

NPG Asia Mater. (1)

K. Y. Kim and J.-K. Song, “Technical evolution of liquid crystal displays,” NPG Asia Mater.1(1), 29–36 (2009).
[CrossRef]

Phys. Rev. E Stat. Nonlinear Soft Matter Phys. (1)

L. Lu, V. Sergan, and P. J. Bos, “Mechanism of electric-field-induced segregation of additives in a liquid-crystal host,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys.86(5), 051706 (2012).
[CrossRef] [PubMed]

SID Symp. Dig. (2)

K. Hanaoka, Y. Nakanishi, Y. Inoue, S. Tanuma, and Y. Koike, “A new MVA-LCD by polymer sustained alignment technology,” SID Symp. Dig.35(1), 1200–1203 (2004).

A. Murauski, X. Li, V. Chigrinov, B. Kobrin, and J. Chinn, “Aligning liquid crystals using self-assembled monolayer,” SID Symp. Dig.38(1), 397–398 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conceptual illustration of the PR-SAM treated oxide surface and depolarized optical images of the LC cells: (a) Photo-reactive silylpropyl methacrylate monolayer on the SiOx surface, macroscopic images of the LC cells (b) without and (c) with PR-SAM treatment, (d) polarized optical microscopic and conoscopic images of the vertically aligned LC cell, (e) populated transient defects formed by applying electric field, (f) uniform light state after annihilation of temporary bulk defects under electric field at 2.5 V, and (g) conoscopic figures after stabilization of the director tilt with different sample orientations. Blue arrow in (f) represents the optic axis of LC in the plane of substrate.

Fig. 2
Fig. 2

E.O. switching behaviors of the fishbone-patterned LC cells before and after photopolymerization assisted stabilization of the director pretilt: Time resolved POM images upon applying electric field corresponding to 50% of transmittance (a and c), 90% of transmittance (b and d), prior to pretilt stabilization (a and b), and after PR-SAM assisted pretilt stabilization (c and d).

Fig. 3
Fig. 3

E.O. switching characteristics of the fishbone-patterned LC cells before and after PR-SAM assisted stabilization of the director pretilt: (a) Voltage-Transmittance curves for before (black squares) and after (red circles) stabilization, and (b) grey-to-grey response time for both rising (red squares and circles) and decaying (blue squares and circles) times before and after stabilization, respectively.

Fig. 4
Fig. 4

Graphical illustration of the PR-SAM assisted stabilization of a director pretilt: (a) Symbol with a corresponding molecular structure for the photoreactive surface molecule, (b) SiOx surface with hydroxyl group reactive for silanization reaction, (c) photoreactive surface monolayer after silanization, (d) LC cell with the PR-SAM as a homeotropic alignment layer, (e) predetermined uniform tilted state under applied electric field, and (f) stabilized director pretilt coined by the PR-SAM after photopolymerization and removal of electric field (Pink bundles represent polymerization-induced congealed networked state of the SAM). The green arrows denote orientation of LC director.

Metrics